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Abstract

With the growing reliance on machine-learning (ML) methods in finance, an under-

standing of their long-term efficacy and underlying mechanism is needed. We document

the time-varying importance of different stock characteristics over an 18-year (1998-2016)

out-of-sample period to determine whether ML models, when trained on a large set of

firm and trading characteristics, can consistently outperform factor models. Utilizing a

combination of linear and nonlinear models, we form a ML portfolio that consistently gen-

erates a significant alpha against factor models, ranging from 2.14 to 2.74% per month.

We uncover patterns in characteristic dominance that alternates between arbitrage and

financial constraint features. The variation correlates with the US credit cycle, and high-

lights a fundamental economic mechanism underlying the ML portfolio’s performance.

The study’s impact extends to both academics and practitioners, providing insights into

the economic drivers of stock returns and the practical implementation of ML methods

in portfolio construction.
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“We also thought that the cross-section of expected returns came from the CAPM. Now

we have a zoo of new factors.”

John Cochrane, Presidential Address

2011 American Finance Association Meeting

1. Introduction

Harvey et al. (2015) noted that when Fama and French (1992, 1993) published their

influential papers, they identified around 40 anomalies (i.e., irregularities in stock returns)

that the capital asset pricing model (CAPM) could not explain. By 2003, the number of

these anomalies had doubled to 84. Fast-forward to 2012, and the total had surged to

240. Cochrane (2011) referred to the continuing discovery of anomalies as a “factor zoo.”

The increasing computational ease of data mining has contributed to the identification

of many stock-market anomalies. For instance, a significant stock characteristic might

be explained by theories related to risk (e.g., a company’s financial distress or quality),

mispricing (e.g., limits to arbitrage opportunities), information (e.g., metrics derived

from options), or behavioral factors (e.g., herding or anchoring behaviors). Conversely,

if a characteristic is found to be insignificant, it might be dismissed as a result of data

snooping or market inefficiency. It is common to find correlations among subsets of

anomalies, such as those related to illiquidity (Amihud, 2002; Pástor & Stambaugh, 2003;

Liu, 2006), idiosyncratic volatility (Ang et al., 2006; Fu, 2009), or coskewness (Kraus &

Litzenberger, 1976; Harvey & Sidique, 2000; Conrad et al., 2013). Harvey et al. (2015)

suggested that many published findings in Financial Economics are probably false.

Enormous research effort is spent discovering new anomalies and debunking extant

ones. Hou et al. (2020) reported that 60% of published anomalies cannot be replicated

based on a standard t-stat hurdle of 1.96. After adjusting for data snooping using a

t-stat of 2.78, the proportion of insignificant anomalies increased to 80%. However, the

literature hardly pays any attention to the factor-zoo characteristics that persist, such as

the 20% of anomalies in Hou et al. (2020) that have been replicated.

Our motivation and contribution are to identify the characteristics that remain sig-

nificant and to ascertain a possible economic mechanism behind them that is dynamic

over time. Mclean and Pontiff (2016) explained a once-off rise and fall in a published
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anomaly. However, it is not clear how one would explain the recurring significance of cer-

tain characteristics over a long sample period. To fill in this knowledge gap, we conducted

a comprehensive out-of-sample factor analysis over a long period, without imposing any

assumptions on the underlying factor structure. Our factor-zoo analysis spanned time

t = 1, ..., T across firms i = 1, .., N for k = 1, ..., K characteristics. Standard economet-

ric tools can handle a large panel of N firms over time T , but they accommodate only

a small variable choice set. This poses a problem when K is large. The estimation is

normally in-sample and assumes a linear factor structure with some added non-linearity

(e.g., interacting and/or squared variables). Functionally, the number and types of vari-

ables underlying the return-generating process structure are unobservable. Moreover,

a given factor structure may fit some characteristic subsets but not others. Addition-

ally, a nonlinear factor structure becomes less stable when taken out-of-sample, which

is why standard factor models follow a parsimonious linear structure, with three to five

characteristics between them.

Therefore, we used machine-learning (ML) models in this paper. These models spe-

cialize in prediction tasks that facilitate out-of-sample analyses. In stark contrast, over-

fitted econometric models degrade rapidly when applied out-of-sample. Using an objec-

tive function to maximize stock-return forecast accuracy over a 1980-1998 sample, we

trained different ML models to choose from K = 106 firm and trading characteristics

to estimate the factor structures that maximize the objective function. We applied the

trained ML models on a 1998-2016 out-of-sample testing period to generate monthly re-

turn forecasts and form a portfolio of predicted winner (PW) and predicted loser (PL)

stocks. The ML portfolio generated a significant alpha (αMLA) against entrenched factor

models, including those of Fama and French (1993; i.e., FF3, 2015 FF5, and 2018 FF6),

Carhart (1997; i.e., C4), Hou et al. (2015; i.e., Q4), and Hou et al. (2021; i.e., Q5).

Using the ranked difference in normalized characteristic value between the PW and PL

stocks, we identified the ML portfolio’s dominant characteristics over the 18-year out-of-

sample period. Given the significant αMLA, long-surviving characteristic anomalies were

identified. The ML portfolio analysis uncovered a noteworthy pattern in the rise and fall

of dominant characteristics in the factor zoo. Specially, we found that only two small

subsets of three or four characteristics play an alternating dominant role in generating the

ML portfolio return. In the literature, these subsets are generally viewed as attributes of

3



investor-level arbitrage constraints (i.e., Ivol [Ang et al., 2006] and max and min effects

[Bali et al., 2011]) or firm-level financial constraints (i.e., cash flow risk [Da & Warachka,

2009], growth in external financing [Bradshaw et al., 2006], sale of common preferred

stock [Pontiff & Woodgate, 2008], and gross profitability [Novy-Marx, 2013]).

Given that all the characteristics in K were published by 2016, it is unlikely that

any dominant characteristic could generate a significant αMLA against newer factor mod-

els (e.g., FF5/FF6 and Q4/Q5). This suggests that a potential source of αMLA could

stem from the ML portfolio’s time-varying exposure to dominant characteristics over the

testing period. Using a conceptual argument alongside empirical results, we uncover the

alternating importance of arbitrage and financial constraint characteristics, showing that

they coincide with different stages of the credit cycle. The finding offers fundamental

insight into a longer-horizon explanation of cross-sectional stock returns.

Our paper complements several recent studies. That the ML portfolio loaded on a

small set of characteristics, is consistent with Mclean and Pontiff (2016) and Hou et

al. (2020), who suggested that many published anomalies could not be replicated. Our

emphasis is to better understand the source of a pervasively significant αMLA against

factor models, which we associate with two distinct alternating characteristic subsets.

Avramov et al. (2023) attributed the αMLA to microcap and distress stocks, arguing that

an unconstrained αMLA would be driven by mispricing, owing to the limits to arbitrage,

rather than abnormal returns being realized. Leippold et al. (2022) built ML portfo-

lios using Chinese stocks, confirming that illiquidity characteristics dominate in markets

crowded with retail investors. Both studies examined potential sources of the αMLA to

better understand ML portfolio risks and rewards, but they did not focus on the dynamic

characteristic exposure to out-of-sample data. Our ML portfolio not only exhibits time-

varying exposure, but the timing of the exposure on arbitrage and financial constraint

characteristics align with the contraction and expansion stages of the US credit cycle.

Our paper proceeds as follows. The next section reviews recent studies that employ

ML in finance realms and examines different aspects of the factor zoo. Section 3 outlines

our ML training procedure, Section 4 presents our ML portfolio analysis, and Section 5

provides conclusions.
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2. Literature review on ML and the factor zoo

Researchers have utilized ML methods as prediction tools for a variety of issues, rang-

ing from financial crises to energy prices (Samitas et al., 2020; Polyzos et al., 2021;

Alshater et al., 2022)). For asset pricing, ML methods have been used to predict ex-

pected returns, analyze factors, assess risk exposure, determine risk premia, and calculate

stochastic discount factors. These models are also used in model comparisons and trading

strategy evaluations. Giglio et al. (2022) provided a comprehensive survey of the lat-

est methodological advancements and MLAs, highlighting advancements in econometrics

problems with large characteristic domains K. There are four main problems currently

pursued in this field. Notably, researchers are trying to raise the acceptance hurdle to

expand the factor zoo, reduce the dimensionality of the factor zoo, apply principal com-

ponent and/or factor analysis to extract common latent factors, and create factor-zoo

portfolio-analysis applications.

In terms of raising the acceptance hurdle, recent studies have voiced data-mining con-

cerns in empirical asset pricing. For example, Foster et al. (1997) addressed a related

problem associated caused by the increased availability of data, proposing a simple pro-

cedure to adjust the critical maximal R2 value to account for variable snooping. Hou

et al. (2020) reported that an adjusted t-stat of 2.78 at a 5% significance could reject

around 80% of the published anomalies. Harvey et al (2015) documented the prolifera-

tion of anomalies, and introduced a new multiple testing framework that infers historical

acceptance thresholds from past studies. They proposed that a new factor must exhibit

a t-stat greater than 3.0. Chordia et al. (2019) implemented a data-mining approach

that generates over two-million trading strategies. Using multiple hypothesis testing to

account for covariance in trading signals and returns, they controlled for the proportion

of false rejections by proposing that the 5% significance t-stat threshold should be closer

to 4.0.

Regarding reducing the dimensionality of the factor zoo, Freyberger et al. (2017) used

an adaptive group–based least absolute shrinkage and selection operator (LASSO) to se-

lect characteristics that provide independent information. To address model-selection

bias, Feng et al. (2018) combined LASSO with a double least absolute shrinkage method

that used a two-pass regression procedure (i.e., Fama–MacBeth) to identify an appro-

priate finite set of control variables to evaluate a new candidate factor. Giglio and Xiu
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(2016) and Kelly et al. (2019) applied dimension reduction methods to estimate and

test factor-pricing models. Feng et al. (2020) applied ML models to evaluate the ex-

planatory power of any new factor over a high-dimensional set of existing factors. They

found that a small set of characteristics provide statistically significant explanatory power

incrementally over hundreds of known factors in the literature.

Regarding principle component and factor analyses, Kelly et al. (2017) used charac-

teristics as instruments to extract principal components to analyze time-varying factor

loadings, and Light et al. (2017) applied partial least-square estimation to extract a

finite set of common latent factors from characteristics. They reported that their latent

factor–sorted portfolios produced a larger spread in returns than individual characteris-

tic portfolios. Kozak et al. (2020) used shrinkage and selection methods to estimate a

stochastic discount factor that explains returns for a large number of stocks, and Frey-

berger et al. (2017) use similar methods to approximate a nonlinear factor structure of

expected returns.

For factor-zoo applications, Moritz and Zimmermann (2016) applied tree-based mod-

els to sort portfolios, and Gu et al. (GKX, 2020) trained 13 ML models on a factor zoo of

94 characteristics, identifying a set of important characteristics (i.e., variants of momen-

tum, liquidity, and volatility) that were common across models. GKX (2020) attributed

the outperformance of boosted trees and neural networks to their ability to allow nonlin-

ear interactions among characteristics. Avramov et al. (2023) documented a significant

αMLA from a portfolio formed using ML models trained on an unconstrained factor zoo.

However, they found that the alpha’s significance was sensitive to economic restrictions.

Specifically, their unconstrained ML portfolio loads heavily on microcaps and financially

distressed stocks. There are recent deep-learning finance applications that utilize mul-

tisequence techniques to capture correlations among firm characteristics over extended

periods (Feng et al., 2018). Recent studies have also explored the use of deep reinforce-

ment learning to directly enhance portfolio performance (Cong et al., 2021). Bayesian

frameworks have been used for model selection as well (Barillas & Shanken, 2018; Bryz-

galova et al., 2023).

Our paper complements both GKX (2020) and Avramov et al. (2023) in several

aspects. Most discoveries presented in GKX (2020) involved in-sample analyses of multi-

year information acquired by individual ML models during repeated training iterations;
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the primary emphasis was on stock returns. In contrast, our ML portfolio is generated

from an ensemble forecast from different ML models trained only once on the first half

of the data to provide out-of-sample analyses. This method is less dependent on specific

ML models and more equitable to firm characteristics with varying update frequencies.

Our approach allows us to reverse-engineer out-of-sample patterns from the characteristic

behaviors found in the ML portfolio. Lastly, the dominant characteristics reported by

GKX (2020) were variant measures of volatility, illiquidity, and momentum. These are

all trading characteristics that correlate to an extent with dominant arbitrage constraint

characteristics (i.e., Ivol and Max/Min) in our ML portfolio. We also find that their dom-

inance alternates with a contrasting set of firm-level financial constraint characteristics.

Avramov et al. (2023) reported a significant αMLA from an unconstrained factor

zoo, attributing it to difficult-to-arbitrage stocks (i.e., microcaps) and financial distress

indicators (e.g., no rating or downgrades). Our ML portfolio is also generated from an

unconstrained factor zoo; however, instead of restricting our test to a single source of the

alpha, we dissect the ML portfolio to uncover patterns in the dominant characteristics over

time. Like Avramov et al. (2023), we find that proxy arbitrage constraint characteristics

are important. However, we also discover that their importance alternates with the firm-

level financial constraint characteristic proxy.

Many research papers focus on ML model–specific risk premia. Alternatively, our

approach incorporates asset pricing models into the aggregation of return predictions

from different ML models. Few studies have attempted to directly interpret output

from multiple models; however, Cong et al. (2021) did so by employing a characteristic

importance method using gradients to identify the main characteristics driving their ML

predictions. In contrast, we use portfolio analysis to identify the dominant characteristics

afterward.

3. MLA Methodology

Our MLA inputs the firm sample, N , which is an average of 2,500 stocks listed on

NYSE, NASDAQ, and AMEX) with K = 106 firm and trading characteristics. Different

ML models are trained using 1980–1998 data, and a stock-return forecast is provided for

each month, combined from the multiple trained ML model predictions. Our MLA then

uses these to sort firms and identify PWs and PLs. This process provides the long and
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short legs of the portfolio, which are then rebalanced monthly over the 1998–2016 testing

period.

One of our research objectives is to determine whether there are any characteristics

in K that survive over the long out-of-sample period. For this, we ensured that our

K = 106 characteristics were comparable with well-cited papers. Notably, Gu et al.

(2020) set their K to 94, Green et al. (2017) to 94, Mclean and Pontiff (2016) to 97,

Kozak et al. (2020) to 80, and Feng et al. (2020) to 150. The consensus is that most

characteristics in a large K are redundant. For example, Hou et al. (2020) found that

nearly 82% of their 450 characteristics were anomalies, which rendered the results less

significant in later sample periods. We confirmed that only a small subset of K was

dominant in our ML portfolio during the out-of-sample period.

Our 1980–2016 full-sample period is comparable with the 1976–2017 period applied

by Feng et al. (2020), which is one of the first papers to apply ML methods in as-

set pricing. We want to test dominant characteristics against economic states, which

requires a long out-of-sample period. Hence, this period also covers normal and crisis

trading conditions so that our findings are relevant to both states. The training sample

includes the crash of October 1987, and the testing period includes the 2000 DotCom

crash, the September 11th, 2001 terrorist attack, the 2008 global financial crisis, and

the 2015–2016 Wall Street sell-off. An unbiased training/testing partition is applied by

simply dividing the full 1980–2016 sample period evenly into a 1980–1998 training pe-

riod and a 1998–2016 testing period. This forms the basis for our main empirical analysis.

3.1. Constructing the ML portfolio

Figure 1 provides a flowchart illustrating the key stages of constructing our ML port-

folio. Starting with K = 106 firm and trading characteristics, we single-sort the firms

on the level and change of each k = 1, 2, ..., K characteristic, which yields 212 spread

portfolios. In Step 1, the MLA trains different ML models on these 212 characteristic

portfolios, which are then shortlisted into the model set, M , based on in-sample return

forecast accuracy. To obtain an ensemble forecast, we apply stacking to generate a con-

ditional probability distribution over trained models in M per Wolpert (1992), Ho and

Hull (1994), and Kittler et al. (1998). Effective stacking requires a shortlist of impor-

tant characteristics (i.e., feature selection), and numerous selection methods are available

8



(Chandrashekar & Sahin [2014]); however, their performance is entirely data-specific.

Use factor models to downsize K

Step 1

abcapx
abcapx_d
acc_fwy

acc_fwy_d

.

.

.
vroa2

vroa2_d
xad

xad_d

Factor zoo K 
containing firm and 

trading characteristics Extra-Trees; Gradient Boosting Decision 
Trees, and Linear Regression

Model  1
Model 2

.

.

.

Identify a small number of anomalous 
characteristics separately using

Fama and French (2015, or FF5) or 
Hou et al. (2015, or Q4)

Step 2

Feature 1
Feature 2

.

.

.

Use stacking to 
combine return 
forecasts from 
models in M

Step 3

Train Data 
1980-1998

Test Data 
1998-2016

Step 4
Sort N firms on combined  
monthly return forecast to 
identify  predicted winners 

and losers 

Train different ML models on K

Machine-learning 
Portfolio

Figure 1: Blueprint for constructing the ML portfolio.

The MLA trains different ML models on K characteristics in Step 1, after which the trained models

are shortlisted into model set M , based on in-sample return forecast accuracy. In Step 2, the MLA

separately utilize FF5 and Q4 factors to identify important features θ1998. In Step 3, the MLA uses θ1998

to implement stacking, which generates a probability distribution over M , after which it computes a

probability-weighted return forecast for each stock. Lastly, in Step 4, firms are decile-sorted on forecast

return to form PW and PL portfolios, which become a monthly rebalanced long–short ML portfolio over

the testing period.

In Step 2, we address the feature selection problem by using factor models to identify

training-sample anomalies. We run separate regressions of each characteristic portfolio

return against FF5 and Q4 factors and rank them on α to identify a small subset, θ1998 ∈

K, that is anomalous to each factor model.

In Step 3, the MLA implements stacking by using θ1998 to generate a probability

distribution over model set M , after which it computes a probability-weighted return

forecast for each stock, r̂i,t+1. Lastly, in Step 4, firms are sorted on r̂i,t+1 to form PW

and PL decile portfolios, which become the long and short legs of the monthly rebalanced

ML portfolio over the testing period. As a comparison, GKX (2020) trains different ML

models (Figure 1 Step 1), and uses each model’s predicted returns directly to sort firms

into PWs and PLs (Figure 1 Step 4). Afterward, the analysis focuses on a small set of

common dominant trading characteristics identified by the different trained ML models.

To complement Figure 1, Algorithm 1 outlines the key details of the ML portfolio

construction process. In Stage 1, we evenly divide the 36-years full-sample period into

a training sample (1980–1998) and testing sample (1998–2016). Using the training sam-

ple, we estimate different ML and linear regression models and identify training-sample
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anomalies in θ1998. The training procedure strictly ends in June 1998, after which there is

no conditional updating of model parameters or θ1998. As a robustness check, we consider

a subsample partition based on the 1980–1994 training sample and the 1994–2006 testing

sample. The main findings are similar; hence, we focus our discussion on the full-sample

partition.

In Stage 2, the MLA trains three types of models: extra-trees (ET; Geurts et al.,

2006), gradient boosting decision tree (GBDT; Friedman (2001)), and linear regression.

ET and GBDT are ML variants that are trained on the entire factor zoo, K, considering

a range of model configurations. The next section of this paper contains a brief technical

description of the ET and GBDT models. Note that GKX (2020) provides a comprehen-

sive and succinct overview of different ML models for readers with no computer science

background. For linear regression models, the MLA estimates a two-factor specification

from an exhaustive pairwise combination of θ1998 characteristics.

Each month during the training period, the MLA evaluates each model’s in-sample

ability to predict stock returns for all firms i = 1, ..., N . We measure forecast accuracy

based on the R-value in Equation (1), where ri is the realized return of stock i, r̂i is

the predicted return, and µ is the mean return for all firms. The R-value normalizes

the sum-of-squared forecast error,
∑N

i (ri − r̂i)
2, across N firms using the same month’s

cross-sectional return variance,
∑N

i (ri − µ)2. Each month, the trained model with the

highest R-value is shortlisted into the model set, M . Note that a trained model that

generates poor return forecasts could produce a negative R2. Hence, to calculate a valid

R-value, we take the square-root of the absolute value of R2 and add a negative sign to

indicate that it is a low score. Whereas R2 and the R-value give similar model rankings,

the latter is more commonly used in the ML.

R2 = 1−
∑N

i (ri − r̂i)
2∑N

i (ri − µ)2

R-value = sign(R2)
√

|R2| (1)

The above shortlisting procedure provides a model set, M , that includes all trained

models that are ranked best in predicting stock returns at least once during the training

period. The number of models in M is less than the total number of trained models
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from ET, GBDT, and linear regressions. Hence, a trained model may exhibit the highest

R-value over several months or even years. Another scenario involves a trained model

that never produces the highest R-value throughout the training sample. As such, it is

unlikely that any given model will dominate all others trained on the same sample. How-

ever, our approach accommodates possible variations in model prediction power based

on the timeframe, which could be associated with its functional form or the relevance of

characteristics in focus. It is important to note that the identification of M is strictly

in-sample.

In Stage 3, the MLA performs stacking to combine stock-return forecasts from different

trained models in M . The MLA generates a probability distribution over M , conditional

on θ1998. For each firm i, the MLA computes a conditional probability-weighted monthly

return forecast. Intuitively, a heavier weight is assigned to trained models in which θ1998

characteristics are important. The point is that θ1998, which contain training-sample

characteristics that generate significant α against either FF5 or Q4, are more important

than other characteristics in explaining stock returns over time.

Here, Stage 3 represents a technical contribution to the application of trained ML

models in portfolio allocation. We use factor models to address the feature selection

problem by stacking returns. It is inappropriate to weigh return predictions using the R-

value of different trained models because it is measured from different parts of the training

sample. It is also suboptimal to utilize R-values based on the entire training sample as

weights. These R-values indicate each model’s average return prediction performance

over the training sample, but they would not capture the likely time-varying importance

of different characteristics. Notably, the probabilities over M are conditional on θ1998;

however, the ML models themselves are trained on the factor zoo, K. We can confirm

that the trained ET and GBDT models in M are assigned an average 85% probability

weighting.

Lastly, in Stage 4, the MLA generates a monthly stock-return forecast, rit+1, from

each trained model in M . Using the conditional probability distribution over M , the

MLA computes a probability-weighted monthly stock-return forecast, r̂it+1. Firms are

sorted on r̂it+1 to form an ML portfolio that buys top decile-PWs, and short-sells the

bottom-decile PLs. Hence, we have two ML portfolios that come from FF5 and Q4 to

identify θ1998, which the MLA apply to combine model forecasts. More than half of the
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Algorithm 1: Key stages to constructing the ML portfolio.

• Stage 1: Training and testing-sample partitions

1. Divide the 36-year full sample into training (1980–1998) and testing
(1998–2016) sets.

2. Use the training sample to identify model set M .

3. Identify training-sample anomalies θ1998 ∈ K (see Section 3.2 and Algorithm
2 for details).

4. Trained ML models are not retrained during the testing period (i.e., no
dynamic updating).

• Stage 2: The MLA training procedure

1. Using 1980–1998 data on all K=106 characteristics, the MLA estimates ET
and GBDT models with different parameter settings. For linear regression,
the MLA estimates an exhaustive pairwise combination of characteristics in
θ1998.

2. For each month, t, in the training sample, the MLA computes each model’s
R-value to evaluate among the trained models.

3. Each month, the model with the highest R-value is shortlisted into model set
M .

• Stage 3: Generate the ensemble forecast by stacking on θ1998

1. The MLA trains another decision tree to generate a probability distribution
over M , conditional on the training-sample anomalies, θ1998.

2. Models in M , for which one (or more) characteristic in θ1998 is important,
receive a larger probability weight.

• Stage 4: Generate return predictions to form the ML portfolio

1. For each month, t, in the testing sample, the MLA

(a) uses each model in M to predict the next-month’s return, rit+1, for each
firm, i.

(b) uses the decision tree from Stage 3 to compute the ensemble forecast,
r̂it+1, as the probability-weighted stock-return forecast from the models
in M .

(c) repeats this procedure on a monthly basis until the end of the testing
period.

2. decile-sorts each firm at each month t on r̂it+1 to form a long–short ML
portfolio of PWs (top decile) and PLs (top decile).
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characteristics in θ1998 are the same between FF5 and Q4, such that the main findings

are consistent between the two portfolios.

3.1.1. Brief outline of the ET and GBDT models

The estimation procedures for ET and GBDT are complex, as they combine pre-

dictions from numerous decision trees. Here, a decision tree refers to a nonparametric

model that resembles a tree-like structure. GKX (2020) Section 1.6, Figure 1 provides

a good comparison between a decision tree on size and value, and the equivalent table

for a two-way sort. It demonstrates a decision tree’s ability to handle a large number

of characteristics, unlike conventional sorting. The estimation procedure for the decision

tree is based on squared residuals, including some regularization terms to penalize for

complexity (e.g., depth of the tree).

For a random forest algorithm, the estimation procedure separately estimates mul-

tiple decision trees on random sampling from the same training sample. A prespecified

weighting-scheme is used to combine predictions from different decision trees. An ET

algorithm uses the full training sample to estimate decision trees. However, the decision

boundaries of numerical input features are set randomly instead of being optimized. A

gradient boosting method updates a model with the gradient of the loss function in an

iterative fashion. The GBDT extends this idea to decision trees. The algorithm grows

successive trees based on the residuals of the preceding tree. In this paper, we use Light-

GBM Python package (Ke et al., 2017) to estimate ET and GBDT models. This approach

speeds up the training procedure of conventional GBDT using gradient-based one-sided

sampling and exclusive feature bundling.

3.2. Identify training-sample anomalies for stacking

To address the feature selection problem in Stage 3, we separately use FF5 and Q4 to

identify a small number of anomalous characteristics, θ1998 ∈ K. As the MLA progres-

sively moves through the 1998–2016 testing period, more observations on θ1998 and other

characteristics become available. These are sequentially fed into the MLA to generate

a monthly time-series of the next-month’s stock-return forecasts. Note that θ1998 were

identified by June 1998; they were not updated during the testing period.
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3.2.1. Ranking approaches

We identify θ1998 based on each characteristic’s ability to generate α against FF5 and

Q4 factors. Following Fama and French (1996), we decile-sort firms on the level and

change in each of the K =106 firms and their trading characteristics, generating 212

characteristic portfolios. The firm characteristic portfolios are rebalanced at the end of

every June, whereas trading-characteristic portfolios are rebalanced monthly. Character-

istics are ranked on the magnitude of their portfolio, α, from separate regressions against

FF5 and Q4 factors. As FF5 and Q4 consider a similar set of factors, it is unsurprising

that their corresponding θ1998 contain similar characteristics, albeit with slightly different

rankings.

1. The Fama and French (2015) method of regressing characteristic portfolio returns

using FF5 factors.

rkt−rft = αFk+bk(rmt−rft)+sk(SMBt)+hk(HMLt)+ik(CMAt)+pk(RMWt)+εkt,

where rmt is the value-weighted (VW) return of the market portfolio, rft is the risk-

free return, SMB is the spread return between a portfolio of small and large firms

sorted by market capitalization, HMLt is the spread return between a portfolio of

high and low book-to-market ratio firms, CMAt is the spread return between a port-

folio of firms with conservative and aggressive investment strategies, and RMWt is

the spread return between a portfolio of firms with robust and weak profitability.

εkt ∼ (0, σ2
ε) is a zero-mean residual, and coefficients {bk, sk, hk, ik, pk} are the FF5

factor loadings ranked on |αFk|.

2. The Hou et al. (2015) method of regressing characteristic portfolio excess returns

on Q4 factors.

rkt − rft = αQk + bk(rmt − rft) + sk(SMBt) + ik(I2At) + pk(ROEt) + εkt,

where I2At is the spread return between a portfolio of low and high investment

stocks, ROEt is the spread return between a portfolio of high and low profitability

(i.e., return on equity) firms. The coefficients {bk, sk, ik, pk} are loadings on Q4

factors, whose characteristics are ranked on |αQk|.

In the preliminary analysis, we considered additional feature selection approaches
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based on industry norms (e.g., spread return, correlation, and mean-variance efficient).

These approaches aim to identify characteristics from K that are likely to be associated

with large (positive or negative) returns over time. In the next section, we provide some

in-sample results that show that these industry approaches are inferior to FF5 and Q4.

Furthermore, our paper does not aim to evaluate competing feature selection methods

for combining ML model forecasts. Hence, we do not consider them in the out-of-sample

analysis.

3.2.2. Optimal number of anomalous characteristics in θ1998

We can use FF5 and Q4 factors to identify training-sample anomalies in K. However,

the optimal number of anomalies to include in θ1998 is an empirical choice.

We considered between 7 and 10 characteristics based on the following justifications.

First, if θ1998 contain too many characteristics, it could introduce more noise than in-

formation when combining return forecasts across trained ML models. Second, because

all characteristics in K were published by 2016, there should be only a small number of

anomalies (if any) against FF5 or Q4 factors. Third, Stambaugh and Yuan (2017) high-

lighted that the number of characteristics that can parsimoniously explain stock returns

is typically small. Entrenched factor models (e.g., FF3/FF5/FF6, C4, and Q4/Q5) have

between three and six variables. Even the early generation factor models of Chen et al.

(1986) and Chan and Chen (1991) had two-to-four variables.

In Figure 2a, we plotted the ML portfolio average monthly return, r̄ML,t, against the

number of characteristics in θ1998 for the various identification approaches. The graphs

confirm that ML portfolios that relied on FF5 or Q4 to identify that θ1998 generate greater

r̄ML,t compared with using industry norms. The FF5 approach yielded the highest average

monthly return, which stabilized at 2.2% for 6 to 10 characteristics in θ1998. Next is

Q4, with a peak r̄ML,t of 2.15% corresponding to eight characteristics in θ1998. Third

is C4, which stabilized at eight characteristics at r̄ML,t = 2.1%. A robustness check

based on subsample partitioning (Figure 2b) confirms that r̄ML,t did not increase from

expanding θ1998 to beyond eight characteristics. We used seven characteristics for all

ranking approaches for the remaining numerical results in this paper.
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(a) Training: 1980–1998, Testing: 1998–2016 (b) Training: 1980–1994, Testing: 1994–2006

Figure 2: ML VW portfolio out-of-sample average monthly return against the number of anomalies in
θ1998.

We plotted the out-of-sample ML portfolio average monthly returns against the number of characteristics

in θ1998 for various identification approaches: Raw returns, FF5, Q4, Portfolio weight, Correlation, FF3,

and C4. The characteristics were identified based on training samples (a) 1980–1998 and (b) 1980–1994.

3.3. Comparison of ML models

We evaluated the out-of-sample monthly stock-return prediction performance results

of various ML models using linear regression, ET, LightGBM, and MLA. To better com-

pare existing studies, we report the prediction performance of the NN3 model in GKX

(2020), which is an ensemble of 10 neural network models. For all models, the return

prediction follows the procedure outlined in Algorithm 1. In Table 1, we report the

monthly out-of-sample percentage, R2 or R2
oos, for various trained ML models. The “All”

row refers to all stocks; the rows “Top 1,000” and “Bottom 1000” report the R2
oos per-

formance on the long and short sides of the characteristic portfolios. In contrast, GKX

(2020) reports R2
oos for the top and bottom 1,000 stocks by market value.

Table 1: Monthly out-of-sample stock-return prediction performance (percentage R2
oos).

We report monthly R2
oos for stock-return predictions using linear regression, ET, LightGBM, NN3, a

variant of NN3 (NN3-FD), and MLA. To show model performance on the long and short sides of the
characteristic portfolios, we also separately report the R2

oos for the forecasted top-1,000 stocks and
bottom-1,000 stocks by various ML models.

LR ET LightGBM NN3 NN3-FD MLA
All 0.21 0.18 0.55 0.38 0.35 0.55

Top 1,000 0.83 0.44 1.02 0.87 0.88 1.03
Bottom 1,000 0.11 0.13 0.47 0.22 0.21 0.47

We used TensorFlow 2.12 and Python 3.11 for training the neural network models. We
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fixed some of the hyperparameters of the LightGBM model, whereas the rest were fine-

tuned using the validation data, which consisted of 20% of the training set. Specifically,

we focused on the following key hyperparameters: “num leaf,” representing the maximum

number of leaves in one decision tree, “feature fraction,” involving the random selection

of a subset of features on each decision tree, and “bagging fraction,” which pertains to the

random selection of a specific part of data without resampling. Notably, “num leaf” was

set to 70, “bagging fraction” was fixed at 0.7, and we experimented with different values

(0.2, 0.6, and 0.8) for “feature fraction” (refer to Stage 2 of Algorithm 1). For ET, we

fixed “n estimators” at 40 and set “max depth” to four. There were no hyperparameters

for the linear regression models, as they consider only two characteristics.

For NN3, we used the hyperparameters provided in the Internet Appendix (Table

A.5) of GKX (2020), with the exception of replacing l1-regularization with dropout reg-

ularization as in Chen et al. (2024), who reported that dropout regularization has better

performance compared to conventional l1/l2-regularization. The difference between NN3

and NN3-FD columns in Table 1 pertains to our search method for optimal dropout rates

for three hidden layers using TensorFlow’s Hyperband tuner (Li & Jamieson, 2018) for

each testing year separately for NN3. We also used a fixed dropout rate of 0.05 and a

learning rate of 0.001 following Chen et al. (2024) for NN3-FD. A dropout rate of 0.05

in TensorFlow 2.12 is equivalent to the suggested dropout retention probability of 0.95

by Chen et al. (2024) in TensorFlow 1.1. As it easily takes weeks to search for optimal

dropout rates for three NN3 hidden layers, we used a tick size of 0.01 for the dropout

rate domain search. The performance between NN3 and NN3-FD was very small, so we

used NN3-FD for further analysis instead of NN3.

There was a noticeable performance difference between long and short sides of all ML

portfolios, as listed in Table 1. This aligns with Table 1 of GKX (2020) and the observa-

tions of Avramov et al. (2023), where long positions generate a significant economically

larger payoff than the short position. Table 1 shows that LightGBM and MLA performed

similarly and better than other ML models when predicting individual stock returns. As

we argued in Section 2.2, it is inappropriate to choose ML models based on the R-value of

different trained models on training and testing data, as it would introduce a look-ahead

bias.
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Figure 3: Out-of-sample cumulative returns for ML portfolios based on θ1998 identified by various ranking
approaches.

Over the 1998–2016 testing period, we plotted the VW cumulative returns for ML portfolios formed

based on θ1998 identified by various ranking approaches.

3.4. Out-of-sample long-short portfolio cumulative returns for different ranking approaches

Figure 3 plots the ML portfolio cumulative returns over the testing period for the dif-

ferent approaches to identify θ1998. The plots confirm that using FF5 and Q4 to identify

θ1998 lead to higher cumulative returns than industry-norm approaches. This is consistent

with our finding in the Online Appendix Table A3, describing the ML portfolio average

returns of FF5 and Q4. In summary, our analysis shows that factor models help to iden-

tify a small set of important features for stacking. Additionally, adding features from an

exhaustive search of K yields only marginal improvements in r̄ML,t.

3.4.1. Do training-sample anomalies persist during the testing period?

To prevent the look-ahead bias, we identified θ1998 using the training period ending in

June 1998. Based on the confirmed stylized fact, we included in θ1998 seven-to-eight top

ranked characteristics with the largest |α| against FF5 or Q4 factors. Table 2 lists the

training-sample anomalies in θ1998 against FF5 and Q4 factors. Apart from momentum

(mom12) and change in daily average turnover volume (turnover-d) from FF5 and book-

to-market ratio (beme) from Q4, all other characteristics had significantly negative αs.
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The identified θ1998 were robust to subsample partitioning, albeit producing a slightly

different ranking order. Five characteristics were anomalous to both FF5 and Q4 factors,

including idiosyncratic volatility (ivol; Ang et al. (2006)), maximum daily return per

month (max; Bali et al. (2011)), change in illiquidity (amihud-d; Amihud (2002)), month-

end closing price (price), and previous months return (reversal).

The test column reports each characteristic’s α and t-stat based on the 1998–2016

testing sample. It shows that many training-sample anomalies subsequently lost their

significant α during the testing period. This is consistent with Mclean and Pontiff (2016),

who documented a postpublication decline in characteristic spread returns. Indeed, most

K characteristics in our paper were published after 1998. For the FF5 approach, four of

seven characteristics in θ1998 (i.e., ivol, max, price, and reversal) lost their significant α

for the testing period. For the other three, the magnitude of t-stat changed substantially

from 6.04 to 1.78 for mom12, -7.40 to -3.92 for amihud-d, and -5.77 to -3.88 for turnover-d.

The Q4 anomalies were similarly described, with six of eight characteristics losing their

significant α in the testing sample. The BM-ratio and Amihud illiquidity both retained

a significant α, but with lower t-stats of 1.67 and -3.92, respectively. The subsample

partition revealed a similar decline in training-sample anomalies over the testing period.

The last row of Table 2 reports the ML portfolio’s αMLA against FF5 and Q4 for both

sampling partitions. Across the four estimations, αMLA ranged from 2.14 to 2.74% per

month, with t-stats between 4.12∼5.46. The smallest αMLA of 2.14% was larger than the

momentum portfolio’s α=1.88%. The latter is the global maximal α from 848 estimated

αs associated with Table 2 results. We single-sorted on the level and change in K =

106 characteristics to form 212 spread portfolios. Each characteristic portfolio was re-

gressed against FF5 and Q4 factors, which produced a total of 424 estimated α. Because

we considered both full-sample and subsample partitions, there were 848 estimated α in

total, of which momentum’s α = 1.88 was the global maximum. The results show that

although the ML portfolio construction was based on a progressively outdated θ1998 over

the 18-year period, the αMLA remained significantly positive against FF5 and Q4 factors

in both sampling partitions. This suggests that θ1998 are not important sources of αMLA.
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4. ML Portfolio Analysis

In this section, we answer three questions about the ML portfolio analysis: “Is the

αMLA significant against entrenched factor models?” “What is the source of αMLA?” and

“What are the dominant characteristics in the ML portfolio over the testing period?”

Recall that we have two ML portfolios corresponding to FF5 and Q4 approaches to iden-

tify θ1998. However, because the main findings were similar, we focus our discussion on

the FF5 approach.

4.1. Significant αMLA everywhere

We evaluated the ML portfolio against entrenched factor models (i.e., FF3, C4, FF5,

and Q4). For additional insights, in Appendix A4, we report the regression results of

the ML portfolio excess returns against FF6 (2018) and Q5 (2021) factors. The αMLA

remained significantly positive against factor models published after the end of the testing

period. The interaction among four factor models, two sets of θ1998 and equal/VW

portfolio returns rml,t, generated a total of 16 portfolio regression results. Tables 3 and 4

report the estimated factor loading and t-stat for decile portfolios based on FF5- and

Q4-identified θ1998. Each table has two panels corresponding to equally- and VW rml,t.

Across both tables, the main findings are consistent between the two panels; hence, we

discuss mainly Panel A results.

The portfolio analysis revealed significant αMLA everywhere. All 16 ML portfolio

regressions produced αMLA that were highly significantly positive. The magnitude of

annualized αMLA ranged from 17 to 29%, with t-stats ranging from 2.97 to 9.72. On the

long side, all 16 PW portfolios displayed positive α at 95% significance. On the short side,

13 PL portfolio α values were significantly negative at the 95% level, with another two

significantly negative at the 90% level. Most importantly, both the magnitude and t-stat

of α increased monotonically from the PL to PW portfolio. This shows clear evidence that

the sorting criterion (i.e., model-combined stock-return forecast) had a strong anomalous

return pattern versus all factor models.

In the first row of Table 3, the average return and t-stat both increased from the PL

to PW portfolio. The PW portfolio had a significant average monthly return of 1.85%,

and the PL portfolio had an average monthly return of -0.36%, which is insignificant.

This is likely due to short-sale constraints on PL stocks. In the last column, the ML
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portfolio had the same spread return (t-stat) of 2.21% (5.46) as reported in Table 2. The

αMLA was significantly positive against all entrenched factor models, ranging from 1.86%

for FF5, 2.03% for Q4, and 2.48% for FF3 and C4. The t-stats ranged between 6.88 and

9.72. For all models, the magnitude and t-stat of αMLA both increased monotonically

from the PL to PW portfolio.

Against FF3 and C4 factors, rml,t loaded negatively on MKT and SMB (i.e., the

ML portfolio took negative bets on beta and size). Both PL and PW portfolios loaded

positively on the market and size premia. However, because the loading on the PL ex-

ceeded that of the PW, the net loading was negative. The ML portfolio loaded positively

on HML, which came from the PW portfolio chasing value stocks and the PL portfolio

loading-up on growth stocks. Against C4, MOM was not significant in the ML portfo-

lio. Both PL and PW portfolios loaded negatively on MOM. In fact, all decile portfolios

loaded negatively on MOM.

Against Q4 and FF5 factors, the ML portfolio loadings on MKT and SMB were similar

to those for FF3 and C4, albeit less pronounced. The loadings on MKT were insignificant

(i.e., market-neutral). The loadings on SMB remained significantly negative, albeit at a

smaller magnitude. In FF5, HML was no longer significant. Instead, the ML portfolio

loaded positively on both profitability (RMW) and investment (CMA) factors. It also

loaded positively on the corresponding ROE and I2A factors in Q4. All four loadings

were highly significant. Estimates from PL and PW showed that the loadings of PW

were insignificant on RMW, CMA, and I2A factors. The PW loading on ROE (-0.18)

was nearly significant at the 5% level, with a t-stat of -1.97. The significance of the ML

portfolio loadings on investment and profitability factors stemmed from the PL portfolio,

which loaded negatively on RMW, CMA, I2A, and ROE. This suggests that the MLA

can predict low returns for firms with weak profitability and/or aggressive investment

policies. However, the PW portfolio is either insignificant, or it also loads negatively on

profitability and investment factors.

Table 4 evaluates rml,t based on θ1998 identified by Q4 factors. As with Table 3, the

main results were consistent across equal- and VW rml,t. Hence, we focus our discussion

on Panel A. The average return and t-stat also increased monotonically from the PL to

the PW portfolio. Like the FF5 approach, the PW portfolio had a significant average

return of 1.86%, but the PL return of -0.28% was insignificant. The ML portfolio had a
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significant spread return (t-stat) of 2.14% (4.93), as well as a significantly positive αMLA

against all factor models, ranging from 1.71% for FF5, 1.84% for Q4, and 2.37% for both

FF3 and C4. The t-stats ranged from 5.86 to 8.73. Across the four models, the magnitude

and t-stat of α both increased monotonically from the PL to PW portfolio.

Against FF3 and C4 factors, rml,t loaded negatively on MKT and SMB (i.e., the ML

portfolio took negative bets on both beta and size). Both PL and PW portfolios loaded

positively on the market and size premia. However, as the loading on the PL portfolio

those of the PW portfolio, the net loading of the ML portfolio was negative. The ML

portfolio loaded positively on HML, which came from the PW portfolio chasing value

stocks, whereas the PL portfolio loaded-up on growth stocks. Against C4, MOM was

not significant in the ML portfolio, and both PL and PW portfolios loaded negatively on

MOM.

Against the FF5 and Q4 factors, the ML portfolio loading on MKT and SMB were

similarly described for FF3 and C4, albeit less pronounced. The loading on MKT was

insignificant (i.e., market-neutral). The loading on SMB remained significantly negative,

but with a smaller magnitude. In FF5, the ML portfolio loaded positively on HML,

RMW (profitability), and CMA (investment) factors. It also loaded positively on the

corresponding ROE and I2A factors of Q4. All these loadings were highly significant.

Separate results based on PL and PW showed that the significance was driven mainly by

the PL portfolio, which exhibited significantly negative loading on HML, RMW, CMA,

for FF5, and on I2A and ROE for Q4. In contrast, the PW portfolio loaded significantly

only on RMW. This suggests that the MLA is good at predicting lower return for firms

with weak profitability and/or aggressive investment policies. However, it is less able to

predict higher returns for firms with strong profitability and/or conservative investment

policies.

4.2. Potential source(s) of αMLA

Given that the ML portfolio was generated from ML models trained on a large K

of published characteristics, it is not surprising for the ML portfolio to outperform en-

trenched factor models. Because our aim is to ascertain the source of significant αMLA

everywhere, we conjecture that the ML portfolio is likely to exhibit a time-varying char-

acteristic exposure during the testing period. By definition, a given factor model is static
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in the characteristic domain, which makes it awkward to track and explain return over

time in an ML portfolio with changing characteristics. To test this conjecture, we con-

sidered two alternative benchmark zoo factors (K1 and K2) that were designed to beat

the ML portfolio.
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Table 3: ML portfolio loading on factor models (i.e., FF3, C4, FF5, and Q4) over the 1998–2016 testing
period.

At the end of each month, t, we decile-sort stocks on their month t+1 predicted return from the MLA,
based on θ1998 identified using FF5 model. The table reports equally (Panel a) and VW (Panel b)
average returns for the decile portfolios, and the ML portfolio that is long in the PW and short in the
PL. Portfolio returns were regressed against Fama–French-3 factors, Carhart-4 factors, Fama–French-5
factors, and Q4 factors. The estimated factor loadings are reported with Newey–West-adjusted t−stat
in parentheses. *, **, and *** reflect significance at the 10, 5, and 1% levels, respectively.

(a) Equal-weighted

Model Factor PL 2 3 4 5 6 7 8 9 PW ML portfolio

Average ret
Ret -0.36 0.40 0.55 0.80 0.85 0.98 1.07 1.25 1.38 1.85 2.21***

(-0.52) (0.75) (1.22) (2.05) (2.29) (2.81) (3.10) (3.54) (3.79) (4.29) (5.46)

FF3

Alpha -1.50 -0.58 -0.35 -0.03 0.07 0.22 0.31 0.48 0.59 0.98 2.48***

(-8.14) (-4.61) (-3.19) (-0.33) (0.70) (2.31) (2.95) (4.22) (5.52) (6.61) (9.27)

MKT 1.45 1.23 1.10 1.01 0.95 0.92 0.91 0.92 0.93 1.05 -0.40***

(24.26) (27.45) (31.98) (31.40) (35.02) (33.39) (28.33) (26.69) (27.85) (26.67) (-4.71)

SMB 1.35 0.97 0.79 0.59 0.47 0.40 0.41 0.43 0.49 0.68 -0.67***

(12.93) (22.29) (16.00) (9.74) (7.03) (4.75) (4.63) (4.38) (5.16) (6.25) (-3.38)

HML -0.35 -0.07 0.09 0.21 0.31 0.36 0.37 0.37 0.33 0.20 0.55***

(-4.04) (-1.06) (1.77) (4.36) (6.34) (6.85) (5.86) (5.42) (5.37) (3.25) (4.21)

C4

Alpha -1.43 -0.50 -0.30 0.00 0.07 0.24 0.33 0.50 0.62 1.05 2.48***

(-7.52) (-4.09) (-2.70) (0.05) (0.74) (2.57) (3.05) (4.43) (5.74) (6.93) (8.97)

MKT 1.39 1.16 1.05 0.98 0.94 0.90 0.89 0.90 0.91 0.99 -0.40***

(23.55) (25.66) (26.46) (26.40) (31.97) (30.37) (26.54) (24.43) (26.38) (22.97) (-4.59)

SMB 1.38 1.01 0.81 0.61 0.47 0.41 0.42 0.45 0.50 0.71 -0.67***

(12.61) (22.28) (17.73) (11.07) (7.31) (5.31) (5.15) (4.92) (5.66) (7.15) (-3.44)

HML -0.40 -0.12 0.05 0.19 0.31 0.35 0.36 0.35 0.31 0.15 0.55***

(-4.95) (-2.71) (1.19) (4.07) (6.64) (6.85) (5.59) (5.13) (5.23) (2.52) (4.27)

MOM -0.13 -0.15 -0.11 -0.07 -0.01 -0.04 -0.04 -0.05 -0.05 -0.13 0.00

(-3.24) (-4.63) (-4.27) (-3.43) (-0.35) (-1.70) (-1.19) (-1.52) (-1.64) (-3.14) (0.04)

FF5

Alpha -0.98 -0.34 -0.27 -0.11 -0.05 0.06 0.15 0.29 0.44 0.88 1.86***

(-7.66) (-2.92) (-2.18) (-1.16) (-0.56) (0.75) (1.71) (3.25) (4.55) (6.44) (9.72)

MKT 1.16 1.09 1.05 1.04 1.00 0.99 0.98 1.01 1.01 1.09 -0.07

(28.95) (30.47) (30.75) (32.67) (35.40) (41.31) (36.32) (32.98) (31.61) (23.48) (-1.04)

SMB 1.07 0.87 0.77 0.67 0.55 0.53 0.55 0.57 0.63 0.74 -0.33***

(18.79) (14.72) (14.92) (14.66) (10.70) (10.14) (10.02) (9.29) (11.05) (8.52) (-3.03)

HML -0.13 -0.02 0.03 0.04 0.12 0.16 0.18 0.13 0.11 -0.01 0.12

(-2.27) (-0.35) (0.53) (0.69) (2.09) (3.04) (2.76) (1.80) (1.89) (-0.18) (1.15)

RMW -0.94 -0.40 -0.14 0.14 0.19 0.29 0.30 0.32 0.29 0.12 1.06***

(-12.60) (-5.96) (-2.23) (2.77) (4.36) (7.25) (5.87) (6.45) (5.20) (1.60) (8.91)

CMA -0.36 -0.24 -0.12 0.00 0.05 0.03 -0.00 0.09 0.02 0.08 0.44***

(-3.75) (-2.68) (-1.24) (0.07) (0.85) (0.58) (-0.01) (1.53) (0.27) (0.62) (2.67)

Q4

Alpha -0.84 -0.20 -0.14 0.02 0.02 0.13 0.22 0.37 0.56 1.19 2.03***

(-4.34) (-1.48) (-1.04) (0.18) (0.17) (1.07) (1.85) (3.01) (4.53) (6.95) (6.88)

MKT 1.05 0.99 0.98 0.98 0.98 0.97 0.96 0.98 0.97 1.01 -0.04

(16.56) (23.00) (22.07) (20.38) (25.58) (21.60) (19.72) (18.91) (19.27) (16.62) (-0.35)

SMB 1.12 0.85 0.72 0.56 0.47 0.40 0.43 0.44 0.48 0.60 -0.52**

(10.94) (19.43) (14.58) (8.58) (6.26) (4.08) (4.16) (4.06) (4.61) (5.21) (-2.49)

I2A -0.77 -0.37 -0.14 0.10 0.24 0.31 0.30 0.35 0.26 0.12 0.89***

(-8.08) (-4.64) (-1.83) (1.73) (4.25) (5.02) (4.20) (5.44) (4.18) (1.48) (7.43)

ROE -0.88 -0.52 -0.29 -0.07 0.07 0.10 0.13 0.11 0.07 -0.18 0.69***

(-8.45) (-8.54) (-5.52) (-1.36) (1.38) (1.69) (1.63) (1.74) (1.06) (-2.06) (4.41)
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Table 3: (continued)
b) VW

Model Factor PL 2 3 4 5 6 7 8 9 PW ML Portfolio

Average ret
Ret -0.23 0.39 0.24 0.40 0.44 0.51 0.70 0.88 1.07 1.57 1.80***

(-0.32) (0.72) (0.50) (1.06) (1.33) (1.78) (2.40) (2.94) (3.26) (3.69) (3.70)

FF3

Alpha -1.20 -0.38 -0.44 -0.19 -0.14 -0.01 0.19 0.35 0.48 0.89 2.08***

(-5.00) (-2.20) (-2.52) (-1.28) (-1.11) (-0.10) (1.60) (3.24) (3.14) (3.58) (5.70)

MKT 1.64 1.28 1.17 1.03 0.96 0.88 0.81 0.88 0.97 1.13 -0.51***

(19.13) (18.99) (22.82) (31.40) (29.94) (44.66) (22.85) (25.54) (19.13) (17.15) (-4.09)

SMB 0.70 0.44 0.28 -0.02 -0.05 -0.17 -0.10 -0.06 0.08 0.25 -0.45

(4.61) (5.12) (4.55) (-0.47) (-1.33) (-4.27) (-3.14) (-1.36) (1.02) (1.55) (-1.56)

HML -0.69 -0.47 -0.40 -0.13 0.05 0.10 0.07 -0.03 -0.11 -0.25 0.44**

(-5.73) (-3.93) (-3.77) (-1.64) (1.20) (2.71) (1.05) (-0.46) (-1.76) (-2.52) (2.37)

C4

Alpha -1.12 -0.28 -0.41 -0.16 -0.15 -0.01 0.17 0.34 0.47 0.96 2.08***

(-4.67) (-1.66) (-2.30) (-1.13) (-1.21) (-0.06) (1.32) (2.90) (2.85) (3.75) (5.33)

MKT 1.58 1.19 1.14 1.01 0.98 0.88 0.83 0.89 0.97 1.06 -0.51***

(18.05) (19.95) (20.54) (27.37) (27.22) (38.81) (20.75) (28.06) (16.53) (13.34) (-3.57)

SMB 0.73 0.49 0.29 -0.01 -0.06 -0.17 -0.11 -0.07 0.08 0.28 -0.45

(4.62) (5.17) (4.64) (-0.19) (-1.38) (-4.45) (-3.48) (-1.46) (0.85) (1.85) (-1.54)

HML -0.74 -0.54 -0.42 -0.15 0.06 0.10 0.08 -0.02 -0.10 -0.31 0.44**

(-6.64) (-5.45) (-4.12) (-2.03) (1.44) (2.58) (1.32) (-0.27) (-1.91) (-2.84) (2.35)

MOM -0.14 -0.19 -0.07 -0.05 0.03 -0.01 0.04 0.03 0.02 -0.14 -0.00

(-2.20) (-3.74) (-1.56) (-1.67) (1.06) (-0.31) (1.88) (0.63) (0.25) (-1.64) (-0.03)

FF5

Alpha -0.66 -0.07 -0.23 -0.25 -0.21 -0.15 0.04 0.23 0.41 0.91 1.57***

(-3.00) (-0.42) (-1.31) (-1.77) (-1.55) (-1.43) (0.32) (2.22) (2.69) (3.38) (4.03)

MKT 1.36 1.12 1.06 1.06 1.00 0.96 0.89 0.94 1.00 1.12 -0.24*

(16.93) (19.36) (21.55) (26.39) (29.81) (34.77) (30.80) (30.36) (21.60) (15.20) (-1.83)

SMB 0.43 0.29 0.16 -0.04 -0.00 -0.10 -0.02 -0.02 0.18 0.31 -0.13

(3.78) (3.21) (2.12) (-0.72) (-0.10) (-2.69) (-0.48) (-0.46) (2.29) (2.02) (-0.53)

HML -0.32 -0.27 -0.27 -0.21 -0.00 0.01 -0.06 -0.14 -0.14 -0.24 0.08

(-2.84) (-2.49) (-3.14) (-2.21) (-0.03) (0.11) (-1.51) (-2.23) (-2.13) (-2.10) (0.46)

RMW -0.87 -0.50 -0.36 0.01 0.13 0.23 0.24 0.15 0.23 0.08 0.95***

(-7.84) (-5.12) (-3.64) (0.16) (2.30) (5.01) (2.97) (2.33) (2.78) (0.54) (4.73)

CMA -0.46 -0.27 -0.13 0.21 0.03 0.11 0.15 0.18 -0.17 -0.23 0.23

(-2.54) (-1.89) (-1.01) (1.70) (0.46) (1.49) (1.93) (1.88) (-1.63) (-0.99) (0.67)

Q4

Alpha -0.56 0.07 -0.08 -0.14 -0.13 -0.12 0.07 0.29 0.51 1.26 1.82***

(-1.83) (0.34) (-0.37) (-0.83) (-0.83) (-1.09) (0.55) (2.16) (2.58) (4.03) (3.76)

MKT 1.31 1.05 0.98 1.02 1.00 0.95 0.90 0.91 0.96 1.02 -0.29

(10.41) (14.40) (18.43) (23.81) (23.63) (36.32) (29.05) (29.17) (18.25) (12.23) (-1.60)

SMB 0.53 0.37 0.18 -0.06 -0.03 -0.16 -0.03 -0.04 0.13 0.13 -0.40

(3.05) (3.46) (2.68) (-1.05) (-0.73) (-3.30) (-0.66) (-0.75) (1.63) (0.85) (-1.32)

I2A -1.12 -0.79 -0.63 -0.09 0.05 0.20 0.14 0.08 -0.27 -0.37 0.75***

(-7.00) (-4.39) (-4.28) (-0.77) (0.92) (2.99) (1.96) (0.94) (-2.61) (-2.25) (2.93)

ROE -0.67 -0.42 -0.39 -0.06 0.11 0.13 0.22 0.06 0.09 -0.26 0.40*

(-4.24) (-4.43) (-4.52) (-0.84) (1.93) (2.37) (4.10) (0.83) (0.85) (-2.07) (1.69)
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Table 4: ML portfolio loading on factor models (i.e., FF3, C4, FF5, and Q4) over the 1998–2016 testing-
sample period.

At the end of each month, t, we decile-sorted stocks on their month, t+1, predicted returns from the MLA
based on the θ1998 identified using the Q4 model. The table reports equally (Panel a) and VW (Panel
b) average returns for the decile portfolios, and the ML portfolio that is long in the PW and short in the
PL. Portfolio returns were regressed against Fama–French-3 factors, Carhart-4 factors, Fama–French-5
factors, and Q4 factors. The estimated factor loadings are reported with Newey–West-adjusted t−stat
in parentheses. *, **, and *** reflect significance at the 10, 5, and 1% levels, respectively.

(a) Q4 anomalies and equally-weighted portfolio returns.

Model Factor PL 2 3 4 5 6 7 8 9 PW ML Portfolio

Average ret
Ret -0.28 0.35 0.72 0.77 0.83 0.94 1.03 1.19 1.36 1.86 2.14***

(-0.41) (0.62) (1.56) (2.00) (2.31) (2.70) (2.95) (3.38) (3.59) (4.38) (4.93)

FF3

Alpha -1.39 -0.64 -0.17 -0.04 0.05 0.17 0.28 0.40 0.54 0.98 2.37***

(-7.23) (-5.26) (-1.56) (-0.41) (0.56) (1.72) (2.48) (3.76) (4.25) (6.39) (8.73)

MKT 1.41 1.27 1.12 1.00 0.95 0.92 0.89 0.93 0.94 1.04 -0.37***

(21.67) (28.61) (30.16) (28.68) (32.92) (29.29) (27.24) (28.20) (26.33) (26.23) (-4.14)

SMB 1.37 0.96 0.77 0.58 0.47 0.41 0.38 0.44 0.53 0.67 -0.71***

(11.87) (24.92) (13.56) (9.64) (7.37) (5.08) (4.16) (5.28) (4.81) (5.91) (-3.32)

HML -0.46 -0.11 0.04 0.18 0.31 0.36 0.38 0.44 0.42 0.29 0.75***

(-4.84) (-1.74) (0.82) (3.91) (6.66) (6.51) (5.71) (6.16) (5.67) (4.18) (5.29)

C4

Alpha -1.31 -0.59 -0.12 -0.01 0.07 0.18 0.30 0.42 0.59 1.06 2.37***

(-6.65) (-4.61) (-1.16) (-0.13) (0.72) (1.75) (2.69) (3.89) (4.72) (6.95) (8.49)

MKT 1.34 1.23 1.07 0.97 0.93 0.91 0.87 0.91 0.90 0.96 -0.37***

(21.90) (26.38) (25.04) (24.77) (30.06) (28.08) (24.72) (25.98) (23.05) (22.76) (-4.16)

SMB 1.42 0.98 0.79 0.59 0.48 0.41 0.39 0.45 0.55 0.71 -0.71***

(11.56) (23.99) (14.96) (10.66) (8.00) (5.37) (4.63) (5.92) (5.60) (7.11) (-3.38)

HML -0.52 -0.14 0.00 0.16 0.29 0.35 0.36 0.42 0.39 0.23 0.75***

(-6.17) (-2.63) (0.03) (3.77) (6.46) (6.93) (5.55) (5.89) (5.22) (3.37) (5.41)

MOM -0.16 -0.09 -0.10 -0.05 -0.03 -0.02 -0.04 -0.04 -0.09 -0.16 -0.00

(-3.55) (-2.82) (-4.66) (-2.38) (-1.25) (-0.64) (-1.46) (-1.09) (-2.97) (-3.86) (-0.01)

FF5

Alpha -0.83 -0.40 -0.09 -0.08 -0.03 0.00 0.06 0.22 0.34 0.87 1.71***

(-6.24) (-3.61) (-0.77) (-0.82) (-0.34) (0.05) (0.64) (2.75) (3.23) (5.85) (8.32)

MKT 1.11 1.14 1.07 1.01 0.98 1.00 1.00 1.01 1.03 1.08 -0.03

(24.99) (30.76) (29.61) (32.61) (37.20) (35.72) (36.85) (40.84) (31.48) (22.56) (-0.41)

SMB 1.07 0.86 0.76 0.64 0.56 0.53 0.52 0.58 0.68 0.76 -0.31***

(18.73) (16.00) (14.32) (13.15) (11.93) (10.55) (9.14) (11.23) (10.42) (8.61) (-2.84)

HML -0.23 -0.06 -0.01 0.05 0.16 0.14 0.11 0.20 0.16 0.09 0.32***

(-4.25) (-1.08) (-0.19) (1.00) (2.92) (2.50) (1.67) (2.65) (2.05) (1.05) (2.96)

RMW -1.01 -0.41 -0.11 0.08 0.16 0.29 0.35 0.32 0.34 0.17 1.18***

(-12.01) (-6.06) (-2.03) (1.68) (3.06) (7.96) (7.65) (7.51) (5.25) (2.12) (8.78)

CMA -0.34 -0.23 -0.17 -0.06 -0.03 0.07 0.15 0.07 0.07 0.02 0.36**

(-3.48) (-2.82) (-2.45) (-0.82) (-0.55) (1.21) (2.83) (1.19) (0.92) (0.14) (2.19)

Q4

Alpha -0.67 -0.23 0.05 -0.01 -0.03 0.09 0.16 0.29 0.51 1.17 1.84***

(-3.33) (-1.89) (0.41) (-0.07) (-0.27) (0.75) (1.23) (2.48) (3.45) (6.33) (5.86)

MKT 0.98 1.04 1.00 0.97 0.97 0.98 0.97 0.99 0.98 1.00 0.02

(12.95) (26.12) (19.77) (22.30) (21.98) (22.83) (19.76) (22.49) (16.43) (14.83) (0.16)

SMB 1.13 0.84 0.70 0.57 0.48 0.41 0.39 0.44 0.50 0.59 -0.53**

(9.05) (21.23) (13.10) (8.71) (6.18) (4.67) (3.79) (4.47) (3.93) (4.70) (-2.21)

I2A -0.86 -0.41 -0.24 0.01 0.21 0.28 0.39 0.40 0.40 0.21 1.06***

(-7.10) (-5.81) (-4.33) (0.14) (3.51) (4.84) (6.47) (5.86) (5.55) (2.41) (6.90)

ROE -0.96 -0.52 -0.24 -0.03 0.05 0.14 0.13 0.12 0.03 -0.18 0.78***

(-8.48) (-9.82) (-4.81) (-0.59) (0.79) (2.29) (1.94) (1.75) (0.38) (-1.80) (4.31)
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Table 4: (continued)

b) Q4 anomalies and VW portfolio returns.

Model Factor PL 2 3 4 5 6 7 8 9 PW ML Portfolio

Average ret
Ret -0.18 0.29 0.49 0.44 0.38 0.63 0.75 0.84 0.91 1.51 1.69***

(-0.25) (0.48) (1.13) (1.17) (1.14) (2.10) (2.58) (2.92) (2.77) (3.41) (3.45)

FF3

Alpha -1.09 -0.50 -0.19 -0.14 -0.17 0.11 0.23 0.28 0.31 0.80 1.88***

(-3.90) (-2.35) (-1.29) (-0.84) (-1.40) (1.03) (2.11) (2.19) (2.13) (2.98) (5.12)

MKT 1.58 1.37 1.05 1.02 0.94 0.88 0.87 0.87 0.96 1.17 -0.42***

(16.66) (22.35) (27.41) (24.40) (24.30) (35.85) (25.12) (19.08) (23.91) (17.60) (-3.06)

SMB 0.69 0.41 0.34 0.00 -0.13 -0.07 -0.16 -0.02 -0.01 0.24 -0.45

(4.01) (4.94) (6.26) (0.04) (-2.49) (-2.68) (-4.57) (-0.51) (-0.12) (1.28) (-1.39)

HML -0.85 -0.56 -0.28 -0.22 0.02 -0.03 0.08 0.13 0.05 -0.19 0.66***

(-6.24) (-4.57) (-5.11) (-2.36) (0.50) (-0.65) (1.34) (1.69) (0.66) (-1.61) (3.62)

C4

Alpha -1.02 -0.44 -0.19 -0.11 -0.18 0.09 0.22 0.26 0.28 0.90 1.91***

(-3.63) (-2.15) (-1.24) (-0.69) (-1.45) (0.86) (1.90) (2.04) (1.92) (2.97) (4.65)

MKT 1.52 1.32 1.05 1.00 0.95 0.90 0.87 0.88 0.99 1.08 -0.44**

(15.75) (22.66) (23.14) (23.17) (23.97) (28.94) (22.99) (19.09) (23.94) (10.95) (-2.59)

SMB 0.72 0.43 0.34 0.01 -0.13 -0.08 -0.16 -0.03 -0.02 0.29 -0.43

(3.99) (5.66) (6.03) (0.28) (-2.48) (-3.18) (-4.68) (-0.62) (-0.36) (1.57) (-1.31)

HML -0.90 -0.60 -0.28 -0.24 0.03 -0.01 0.09 0.14 0.07 -0.26 0.64***

(-7.16) (-5.08) (-5.36) (-2.64) (0.68) (-0.33) (1.37) (1.86) (0.92) (-2.04) (3.41)

MOM -0.13 -0.10 -0.01 -0.05 0.02 0.03 0.02 0.03 0.06 -0.19 -0.06

(-2.11) (-1.60) (-0.14) (-1.17) (0.72) (1.36) (0.50) (0.70) (1.57) (-1.65) (-0.37)

FF5

Alpha -0.49 -0.14 -0.05 -0.15 -0.27 0.00 0.02 0.18 0.10 0.93 1.43***

(-1.83) (-0.65) (-0.32) (-1.04) (-2.13) (0.02) (0.16) (1.67) (0.74) (3.17) (3.61)

MKT 1.27 1.18 0.98 1.03 0.99 0.94 0.98 0.92 1.07 1.10 -0.18

(14.86) (23.03) (21.46) (26.70) (24.34) (33.67) (37.25) (21.89) (28.82) (12.61) (-1.17)

SMB 0.36 0.29 0.25 0.03 -0.08 -0.02 -0.08 0.06 0.05 0.30 -0.06

(3.08) (3.51) (4.33) (0.37) (-1.56) (-0.41) (-2.29) (0.96) (0.94) (1.63) (-0.26)

HML -0.45 -0.27 -0.24 -0.23 -0.06 -0.11 -0.11 0.06 -0.18 -0.03 0.42*

(-3.57) (-2.14) (-2.77) (-3.10) (-1.03) (-2.38) (-2.19) (0.85) (-2.63) (-0.21) (1.95)

RMW -1.01 -0.47 -0.27 0.06 0.16 0.18 0.28 0.22 0.25 0.00 1.01***

(-8.91) (-4.86) (-2.89) (0.70) (2.57) (2.39) (4.53) (2.71) (3.60) (0.01) (5.10)

CMA -0.42 -0.50 -0.04 -0.04 0.11 0.08 0.30 -0.02 0.34 -0.51 -0.09

(-1.85) (-3.52) (-0.47) (-0.38) (1.73) (1.15) (3.90) (-0.15) (3.39) (-1.91) (-0.24)

Q4

Alpha -0.40 0.09 0.15 -0.04 -0.21 0.02 0.05 0.24 0.20 1.18 1.59***

(-1.08) (0.35) (0.91) (-0.20) (-1.51) (0.18) (0.41) (1.68) (1.21) (3.24) (2.97)

MKT 1.21 1.13 0.93 0.99 0.98 0.94 0.95 0.92 1.02 1.03 -0.18

(8.47) (18.09) (17.06) (18.93) (20.25) (34.50) (29.91) (25.19) (23.26) (9.59) (-0.79)

SMB 0.50 0.36 0.29 0.01 -0.13 -0.02 -0.12 0.02 0.01 0.13 -0.37

(2.35) (4.20) (4.53) (0.16) (-2.59) (-0.39) (-3.33) (0.26) (0.07) (0.72) (-1.05)

I2A -1.21 -1.04 -0.51 -0.33 0.12 0.01 0.24 0.09 0.22 -0.41 0.79***

(-6.11) (-5.84) (-6.05) (-2.31) (1.91) (0.19) (3.61) (0.79) (2.30) (-2.41) (3.10)

ROE -0.74 -0.35 -0.21 -0.02 0.04 0.17 0.18 0.15 0.10 -0.30 0.44

(-4.30) (-3.74) (-2.40) (-0.28) (0.75) (3.33) (3.05) (2.02) (1.48) (-1.78) (1.57)
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4.2.1. ML portfolio versus ML-mimicking portfolio K1

We constructed a time-varying factor that utilizes information from the ML portfolio

to explain-away the αMLA. Each month, we identified characteristics that were signif-

icantly different between the PW and PL portfolios. Using the Stambaugh and Yuan

(2017) mispricing factor approach, we combined all significant characteristics to form an

ML-mimicking portfolio, K1. In the characteristic domain, K, the ML portfolio exhibits

time-varying characteristic exposures. However, unlike static factor models, the K1 factor

can track the ML portfolio over time.

Using the Stambaugh and Yuan (2017) approach also allows us to address two poten-

tial concerns. First, FF5 and Q4 are similar benchmarks. Other than market and size

factors, the models also contain an investment factor (CMAt vs. I2At) and a profitabil-

ity factor (RMWt vs. ROEt). Hence, if the ML portfolio outperforms FF5, it is likely

to beat Q4 as well. This somewhat dilutes our claim of a pervasively significant αMLA

against entrenched factor models. Second, for the portfolio analysis, we could include

αMLA estimates against Stambaugh and Yuan (2017) mispricing factors M4, which have

been shown to explain more anomalies than FF5 or Q4 factors. This may enhance the

robustness of a significant αMLA, but it does not offer additional insights on the likely

sources of αMLA. As with other factor models, the M4 model is static inK, albeit covering

a wider set of characteristics than FF5 or Q4. This is because the two mispricing factors

were constructed from 11 well-documented anomalies. As such, it is unsurprising for

M4 to subsume the explanatory power of FF5 and Q4. Rather than another robustness

check using M4 factors, we used the M4 methodology to construct K1 from significant

characteristics in the ML portfolio.

Each month over the testing period, and for each characteristic k ∈ K, we conducted

an unpaired t-test on the difference in characteristic mean between the PW and PL port-

folios. Those with t-stat > 1.96 were shortlisted, after which they were sorted on the

magnitude of the difference in normalized characteristic mean dkt between the PW and

PL portfolios. The means were normalized by the cross-sectional variation in charac-

teristic values across PW and PL stocks. Normalization was required prior to ranking

as the levels differed across characteristics. Doing so, we obtained a monthly ranking

of dominant characteristics in the ML portfolio during the testing period. We denote

wkt =
dkt∑

k=1 |dkt|
as the weight of the characteristic k. Each month, we combined the list
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of dominant characteristics into a single feature K1it =
∑

k=1(wktkit), where kit was the

normalized characteristic for each firm i. We sorted the entire firm sample on K1it to

form a long-short K1 portfolio with return rk1,t. The Stambaugh and Yuan (2017) mis-

pricing factors were formed on firms’ simple-average ranking across 11 anomalies. Using

K1it is equivalent to sorting firms on weighted-average ranking. If the ML portfolio loads

heavily on a characteristic k, it would rank highly in the shortlist; hence, it is assigned a

heavier weight wkt in K1it.

We ran the regression, rml,t = α1+β1rk1,t+εml,t, to evaluate the ML portfolio against

K1. By design, K1 was endowed with inside information on the ML portfolio, such

that it exhibits strong explanatory power over the testing period. Furthermore, we used

weighted-average characteristic rankings to sort firms, which should be more informative

than the equally-weighted rankings of Stambaugh and Yuan (2017). We found a signifi-

cant β1 = 0.43 on K1, with an adjusted R2 of 0.424. The estimated monthly α1 remained

significantly positive, albeit smaller in magnitude (1.71%) compared with the average

αMLA against entrenched factors. We showed that simply combining the ML portfolio’s

significant monthly characteristics is insufficient to beat it. This suggests that the ML

portfolio’s implied weights in dominant characteristics (i.e., its timing on characteristic

exposure over time) are informative. This is an important clue that motivates a detailed

analysis of the ML portfolio’s time-varying dominant characteristics for the likely source

of αMLA.

4.2.2. ML portfolio versus futuristic portfolio K2

The second benchmark K2 was derived from the factor zoo. Each month during

the testing period, we performed an unpaired t-test on the spread return, rkt, for each

characteristic k ∈ K. Those with t-stats > 1.96 were shortlisted and ranked on the

magnitude of rkt. This generated a monthly rank list of characteristic portfolios with

significant spread returns over the testing period. We denote w′
kt = rkt∑

k=1 |rkt|
as the

weight in characteristic k. As with K1it, each month, we combine ranked characteristics

into a single feature, K2it =
∑

k=1(w
′
kt+1kit). We sorted firms on K2it to form a long-

short K2 portfolio with return rk2,t. Note that K2it is a function of w′
kt+1, such that the

K2 portfolio assigns heavier weights on characteristic portfolios with larger next-month

spread returns.
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Figure 4: ML portfolio monthly hit rate on characteristic portfolios with significant spread returns.

The bottom graph plots the ML portfolio monthly returns over the testing period. The top graph shows

the proportion of monthly significant characteristics in the ML portfolio (K1) that also exhibit significant

next-month spread returns (K2).

We ran the regression, rml,t = α2+β2rk2,t+εml,t, to evaluate the ML portfolio against

K2, which is endowed with perfect foresight on next-month spread returns for all charac-

teristic portfolios. In month t, K2 is formed on K2it, whose weights w
′
kt+1 are calculated

using next-month characteristic portfolio return, rkt+1. As such, K2 systematically loads

on characteristic portfolios with significant next-month spread return. The regression

has a substantially lower R2 of 0.022. The loading on rk2,t is also smaller at β2 = 0.14,

albeit significant. Now, we have an insignificant α2 = 0.4. Given that it is practically

impossible to form K2, the latter benchmark beats the ML portfolio by cheating. We can

confirm that by changing to K2it =
∑

k=1(w
′
ktkit), α2 becomes significantly positive.

Figure 4 plots two graphs. The bottom graph is the ML portfolio monthly return over

the testing period. The top graph shows the proportion of monthly significant charac-

teristics in the ML portfolio (K1) that also exhibit significant next-month spread return

(K2). Put simply, the top graph plots the ML portfolio monthly ‘hit rate’ on K2 charac-

teristics that exhibit significant next-month spread return. Over the testing period, the

ML portfolio hit rate averaged around 50%. The two graphs show some visible comove-

ments in a number of peaks and troughs. This was expected as the hit rate refers to

characteristic portfolios that exhibit significant next-month spread returns.
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4.3. Dominant characteristics in the ML portfolio

Our analysis thus far demonstrates a pervasively significant αMLA against (i.e., FF3,

C4, FF5, and Q4), as well as an ML-mimicking portfolio K1, which uses Stambaugh and

Yuan (2017) to combine significant characteristics in the ML portfolio. It takes a cheating

K2 portfolio that peeks into the next-month spread return of all factor-zoo characteristics

to render αMLA insignificant. Granted, we did not consider the transaction cost associated

with a monthly rebalancing ML portfolio over 18 years. However, the magnitude of

αMLA, which ranges from 1.43 to 2.48% per month, is too large to be explained away by

transaction costs.

In this section, we dissect the ML portfolio to identify the nature and pattern in dom-

inant characteristics that trained ML models uncovered during the 18-year testing period.

4.3.1. Likely patterns in dominant characteristics

We discuss potential sources of αMLA and how this could manifest as patterns in

dominant characteristics in the ML portfolio. First, if training-sample anomalies in θ1998

survive during the testing period, it would be an obvious source of αMLA. The ensemble

forecast from ML models would onload θ1998 characteristics, which could then manifest

as dominant characteristics in the ML portfolio. However, this scenario is unlikely, given

that Mclean and Pontiff (2016) documented a postpublication decline in anomalies. Fur-

thermore, we have shown that most training-sample anomalies in θ1998 were no longer

significant in the testing sample.

Second, according to Harvey et al. (2015), the proliferation of anomalies began around

2003. This suggests that many of our K characteristics were published during the 1998–

2016 testing period. Hence, a potential source of αMLA could stem from the ML portfolio

loading on prepublication testing-sample anomalies. Hence, as their spread returns di-

minish postpublication, the ML portfolio shifts onto other prepublication anomalies. If

this is the likely source of αMLA, then the ML portfolio’s dominant characteristics would

cover a large subset K. We argue that this is also unlikely, as all characteristics in K

were published by 2016. Hence, FF5 and Q4 should suffice in explaining returns for most

characteristics, regardless of when they were published during the 1998–2016 testing pe-

riod. Later, we show that the dominant characteristics in the ML portfolio represent only

a small subset of K.
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Lastly, if our ML portfolio exhibits time-varying characteristic exposure, it could gen-

erate significant αMLA against any factor model that, by definition, is static in the K

domain. We show that this is the most likely source of significant αMLA everywhere.

During the 18-year testing period, the ML portfolio’s top three dominant characteristics

revolved around just 10 variables, although the ML models were trained on K.

4.3.2. Actual patterns in dominant characteristics

In Table 5, we report the proportion of the testing period in which each character-

istic appears as a top three dominant characteristic and the average proportion of each

characteristic appearing in the rankings. Panels A and B correspond to θ1998, which was

identified by FF5 and Q4 factors. We sorted characteristics on how often they appeared

as the most dominant (Rank 1) in the ML portfolio. The table also cites the original

or key paper that published the characteristic. We could not identify a published paper

that focused on sstk, the sale of common and preferred stocks. Bradshaw et al. (2006)

considered a total external financing characteristic that computes net share issuance as

sstk-prstkc. Pontiff and Woodgate (2008) examined how share issuance explains cross-

sectional stock returns. We also could not find a published paper focusing on operating

income before depreciation and tax (oibdp). Simutin (2010) examined how firms’ excess

cash holdings can explain future stock returns, of which oibdp was used to calculate

excess cash holdings. We postulate that oibdp is highly correlated with the Novy-Marx

(2013) grossprofit.

33



Table 5: Top-10 characteristics in the ML portfolio.

This table lists details of the 10 most dominant characteristics in the ML portfolio. We report the propor-
tion of the testing period in which a given characteristic appears in the top three ranks. Characteristics
are sorted based on how frequently they appear as the most dominant (Rank 1) characteristic in the ML
portfolio. We also list the original paper or key paper that highlights each characteristic. Panels A and
B correspond to the ML portfolios that are based on θ1998 identified using FF5 and Q4 factors.

(a) Training-sample anomalies identified by FF5.

Name Characteristic Rank 1 Rank 2 Rank 3 Average
ivol Ang et al. (2006 JF) 27.9% 21.6% 7.2% 18.9%

Idiosyncratic volatility
cashflow Da and Warachka (2009 JFE) 22.1% 13.1% 13.1% 16.1%

Cashflow
gxfin Bradshaw et al. (2006 JAE) 20.7% 13.5% 9.0% 14.4%

Growth in external financing
min Bali et al. (2011 JFE) 8.1% 9.9% 12.6% 10.2%

Min daily return in month
max Bali et al. (2011 JFE) 7.7% 11.3% 10.4% 9.8%

Max daily return in month
sstk Pontiff and Woodgate (2008 JF) 6.3% 5.0% 5.0% 5.4%

Sale of common or preferred stock
grossprofit Novy-Marx (2013 JFE) 3.2% 6.3% 5.4% 5.0%

Gross profit
earnings Chordia and Shivakumar (2006 JFE) 1.8% 5.4% 10.8% 6.0%

Earnings
oibdp Simutin (2010 FM) 0.9% 6.8% 11.7% 6.5%

Operating income before depreciation and tax
gequity Bradshaw et al. (2006 JAE) 0.5% 3.6% 4.5% 2.9%

Growth in equity financing
Total: 99.1% 96.4% 89.6% 95.0%

(b) Training-sample anomalies identified by Q4.

Name Characteristic Rank 1 Rank 2 Rank 3 Average
ivol Ang et al. (2006 JF) 40.5% 13.5% 6.3% 20.1%

Idiosyncratic volatility
cashflow Da and Warachka (2009 JFE) 21.2% 15.8% 11.7% 16.2%

Cashflow
gxfin Bradshaw et al. (2006 JAE) 13.1% 12.2% 11.7% 12.30%

Growth in external financing
min Bali et al. (2011 JFE) 7.7% 12.6% 10.4% 10.2%

Min daily return in month
max Bali et al. (2011 JFE) 1.8% 11.3% 10.8% 8.0%

Max daily return in month
sstk Pontiff and Woodgate (2008 JF) 5.9% 3.6% 5.0% 4.8%

Sale of common or preferred stock
grossprofit Novy-Marx (2013 JFE) 1.8% 3.2% 1.8% 2.3%

Gross profit
earnings Chordia and Shivakumar (2006 JFE) 1.80% 4.5% 11.7% 6.0%

Earnings
oibdp Simutin (2010 FM) 2.3% 8.1% 13.5% 8.0%

Operating income before depreciation and tax
gequity Bradshaw et al. (2006 JAE) 0.5% 6.8% 5.4% 4.2%

Growth in equity financing
Total: 96.4% 91.4% 88.3% 92.0%

34



Table 5a shows that the top 10 characteristics cover 99.1% of the testing period as the

ML portfolio’s most dominant characteristic. For 2 months during the 18-year testing

period, vroa2 and roa appeared once each as the top ranked characteristic in the ML

portfolio (Rank 1). The same characteristics occupied 96.4 and 89.6% of the testing

period as the second (Rank 2) and third (Rank 3) most dominant characteristic. Overall,

these 10 characteristics covered 95% of the testing period as the ML portfolio’s top three

dominant characteristics. Apart from sstk, these characteristics were published in Journal

of Finance, Journal of Financial Economics, or Journal of Accounting and Economics.

The Ang et al. (2006) idiosyncratic volatility (ivol) appeared most frequently in Rank

1 at 28%, followed by the Da and Warachka (2009) cashflow risk measure at 22% and

the Bradshaw et al. (2006) growth in external financing (gxfin) at 20.7%. These three

characteristics also dominated at Rank 2, with ivol at 21.6%, gxfin at 13.5%, and cashflow

at 13.1%. However, the pair of extreme return characteristics (i.e., max and min) of Bali

et al. (2011) were close at 11.3 and 9.9%, respectively. Here, firms were monthly sorted on

their maximum or minimum daily return. The relative importance of characteristics was

more evenly spread in Rank 3, with the top six characteristics appearing between 13.1%

(cashflow) and 9% (gxfin) of the testing period. On average over the top three ranks, ivol

was the most dominant (18.9%), followed by cashflow (16.1%), gxfin (14.4%), and min

and max return (10.2 and 9.77%, respectively). Two other noteworthy characteristics

were the Chordia and Shivakumar (2006) earnings (6%) and operating income before

depreciation, oibdp (6.47%), which was used by Simutin (2010) to compute a firm’s

excess cash holding.

Table 5b is similarly described. Although θ1998 were separately identified using FF5

and Q4 factors, there were four common training-sample anomalies related to ivol, max,

amihud-d, and price-d. Consequently, the two ML portfolios were similar in various

aspects. The same 10 characteristics occupied 96.4, 91.4, and 88.3% of the testing period

as the top 3 ranks in the ML portfolio, averaging 92%. Rank 1 was mainly occupied by

ivol (40.5%), cashflow (21.2%), and gxfin (13.1%). Although these three characteristics

remained prominent in Rank 2 at 13.5%, 15.8%, and 12.2%, respectively, they were more

or less on par with min (12.6%) and max (11.3%). Rank 3 was more evenly covered, with

nine characteristics covering between 5 to 13.5% of the testing period. Averaging across

the top three ranks, ivol remained the most dominant (20.1%), followed by cashflow

35



(16.2%), gxfin (12.3%), and min return (10.2%). Two other noteworthy characteristics

were max return and oibdp, both at 8%.

That the ML portfolio’s time-varying exposures revolved around 10 characteristics

during the 18 years, suggesting that the αMLA could be associated with a fundamental

economic mechanism, which is not adequately explained by any of the entrenched factor

models. Table 5 shows that these 10 consist of three trading characteristics (i.e., ivol,

max, and min), four internal funding characteristics (i.e., cashflow, oibdp, earnings, and

grossprofit), and three external funding characteristics (i.e., gxfin, sstk, and gequity).

These funding characteristics can be viewed as variant measures of a firm’s financial

constraint. In the literature, ivol, min, and max reflect a stock’s tendency to exhibit

extreme returns, which makes arbitrage trading in mispriced stocks costly (i.e., they

could be viewed as proxies of investor arbitrage constraint).

To further explore this issue, we plotted heatmaps to visualize the time-varying domi-

nance of the 10 characteristics in the ML portfolio over the testing period. The heatmaps

in the top half of Figures 5 and 6 both correspond to the ML portfolio formed with

θ1998 identified using FF5 factors. The heatmap for the ML portfolio formed with Q4

anomalies in θ1998 have a similar pattern, which we show in Appendix A6. In the next

section, we elaborate the purpose of the bottom graphs. We plotted the heatmaps by

assigning different colors to the 10 characteristics, with max and min distinguished by

two shades of green. The larger the circle, the higher the characteristic’s rank in the ML

portfolio. To plot the out-of-sample ranks in a single diagram, we converted the charac-

teristics’ monthly ranks into average quarterly rankings and used the results to generate

the heatmaps.

We found several noteworthy patterns. First, all 10 heatmaps exhibited a pattern

resembling the GARCH effect; some maps were more evident than others. Second, certain

characteristics shared correlated rankings. Specifically, the rankings among arbitrage

constraint (AC) characteristics (i.e., ivol, max, and min) visibly rose and fell around the

same time. The correlated rankings among ivol, max, and min were consistent with the

main findings of Bali et al. (2011), where the max-effect reversed the Ang et al. (2006) ivol

puzzle. Similarly, financial constraint (FC) characteristics exhibited correlated rankings,

especially among cashflow, gxfin, earnings, and oibdp. Third, the declining importance

of the AC characteristics in the ML portfolio coincided with the rising importance of
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FC characteristics (i.e., cashflow, gxfin, oibdp, and, to a lesser extent, grossprofit and

sstk). In summary, the heatmap suggests that during the 18-year testing period, the ML

portfolio’s characteristic exposure alternated between investor AC characteristics and

firm FC characteristics.

Earlier, we showed that the αMLA remained significant against a K1 portfolio, which

is formed using monthly dominant characteristics from the ML portfolio. The patterns

in characteristic exposure from the heatmaps confirm our conjecture that a likely source

of αMLA stems from timely shifts in the ML portfolio’s exposure between AC and FC

characteristics. The existing literature applies risk, mispricing, information, and/or be-

havioral channels to explain how a given characteristic could explain cross-sectional stock

return. For example, stocks with high ivol or extreme returns (i.e., max and min) im-

pose a cost on arbitragers. As such, variations in the arbitrage cost affect the degree of

mispricing across stocks, thereby explaining cross-sectional stock returns. Livdan et al.

(2009) applied a risk argument for FCs affecting stock returns. Financially constrained

firms face reduced investment choices, and binding debt collateral impedes their ability

to manage exogenous earning shocks through dividend smoothing. As such, variations in

FC across firms generate cross-sectional stock returns over time. However, it is unclear

whether any of the economic channels could readily explain the alternating importance

of AC and FC characteristics in explaining stock returns beyond the entrenched factor

models.

Is there an economic mechanism that can accommodate the importance of investor

AC, firm FC, as well as their alternating significance in explaining stock return over a

long period? In the next section, we provide a possible answer with supporting empirical

evidence. The purpose is to convince readers that our main finding is not random. The

rise and fall of characteristics in the factor zoo relates to a fundamental explanation of

cross-sectional stock returns.

4.4. Credit cycle and the rise and fall of factor-zoo characteristics

Funding liquidity is an important market friction that affects asset markets. Longstaff

and Wang (2012) extended the canonical asset pricing of Cox et al. (1985) to allow hetero-

geneous agents to achieve optimal risk-sharing between credit markets and other assets.

In their model, the size of the credit sector varied over economic cycles in response to
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risk-sharing, which affects asset prices. Brunnermeier and Pedersen (2009) showed that,

under certain conditions, traders’ funding liquidity and assets’ market liquidity are mu-

tually reinforcing. Studies on investor funding liquidity include borrowing constraints

(Black, 1972), asset margin constraints (Gârleanu & Pedersen, 2011), and financial inter-

mediary capital constraints (He & Krishnamurthy, 2013).

Figure 5: Aligning heatmaps with Debt/GDP and delinquency rate.
The heatmaps illustrate how the ranking of dominant characteristics changes over time. Here, θ1998
is identified using FF5. The most dominant characteristics are idiosyncratic volatility (ivol), cash flow
(cashflow), external financing (gxfin), minimum daily return per month (min), maximum daily return per
month (max), sale of common and preferred stock (sstk), earnings, gross profit (grossprofit), operating
income before depreciation (oibdp), and equity financing (gequity). The heatmap is aligned with variables
commonly associated with the US credit cycle, represented by corporate debt-to-GDP ratio (Debt/GDP)
and delinquency rate (Delinq).
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Figure 6: Aligning heatmaps with credit spread and value of JPY.
The heatmaps illustrate how the ranking of dominant characteristics changes over time. Here, θ1998
is identified using FF5. The most dominant characteristics are idiosyncratic volatility (ivol), cash flow
(cashflow), external financing (gxfin), minimum daily return within each month (min), maximum daily
return within each month (max), sale of common and preferred stock (sstk), earnings (earnings), gross
profit (grossprofit), operating income before depreciation (oibdp), and equity financing (gequity). The
heatmap is aligned with variables that are commonly associated with the US credit cycle, represented
by the corporate debt/GDP ratio, and JPY as a proxy for safe-haven markets.

liquidity includes Lamont et al. (2001), Whited and Wu (2006), and Livdan et al. (2009).

We argue that an economy-level credit cycle reflects the funding liquidity of both in-

vestors and firms. Credit-cycle fluctuations over time generate the alternating importance

of investor arbitrage and firm FCs over time. Consider two economic states:

• As the US economy moves toward a credit-cycle peak,

1. With improving funding liquidity, arbitragers (e.g., hedge funds and invest-
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ment banks) take advantage of capital access to trade mispriced stocks. This

includes those that impose large arbitrage costs (e.g., high ivol or extreme re-

turns (Max/Min)), to which capital-constrained arbitragers are usually sensi-

tive under normal or illiquid funding conditions. As such, arbitrage constraints

become less important in explaining cross-sectional stock returns. Investors

may also take advantage of available low-cost credit and move funds into US

markets from safe havens such as Japanese Yen (JPY) or gold.

2. As credit becomes easier to access, firms engage in capital-raising regardless

of size, credit-rating, or expected profitability. This has two effects. First,

subprime firms avoid or delay their default, causing a build-up of system-

atic distress risk. Second, cross-sectional variations in FC characteristics are

expected to reduce over time. Hence, if a firm exhibits FC during a credit

boom, it is particularly informative on expected distress risk. Both increase

the relevance of FC characteristics in explaining stock return.

• As the US economy moves toward a credit-cycle trough,

1. As funding conditions deteriorate, capital-constrained arbitragers become sen-

sitive to stocks that are costly to arbitrage (i.e., high ivol and extreme returns

(Max/Min)). These stocks are also likely to require greater margins from

investors, further increasing assets’ sensitivity to funding illiquidity. Accord-

ingly, AC characteristics become important in explaining cross-sectional stock

return. With diminishing leverage opportunities, investment capital could also

exit US markets into JPY or gold.

2. As funding liquidity dries up, firms that possibly over-borrowed during the

credit boom start to experience delinquency in debt-servicing obligations, or

they exhibit observable symptoms of financial distress. This directly leads to

rising ivol and extreme returns (Max/Min). More importantly, as the symp-

toms of financial distress manifest, FC characteristics become less important

indicators of distress risk.
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4.4.1. Alignment graphs of heatmap and credit-cycle measures

To verify our conceptual argument, we aligned the heatmap with variables that are

commonly associated with the US credit cycle. Following Altman (2020), we examined

corporate debt/GDP ratio, delinquency rate, and credit spread. We chose JPY and gold

as proxies for safe-haven asset markets. The top reserve currency was USD; however,

we needed to identify a well-accepted reserve currency that is potentially affected by

investment capital flow in and out of US markets but is not directly related to the US

credit cycle. Gold is predominantly traded in USD, hence it is possible for gold returns

to be directly related to the US credit cycle. In Appendix A6, we outline various proxy

variables relating to the US credit cycle, sourced from the Federal Reserve Economic

Database of the Federal Reserve Bank of St. Louis website4.

In Figure 5, we plotted Debt/GDP as the one-year moving average quarterly change

in corporate debt/GDP ratio. Altman (2020) associated an upward trending ratio with

an expansionary credit cycle, which indicates improving funding liquidity, during which

higher-risk firms can further onload substantial debt with relative ease. Figure 5 shows

that periods of rising Debt/GDP ratio are associated with the importance of FC char-

acteristics in the ML portfolio. We also plotted Delinq in Figure 5. A rise in corporate

delinquency indicates deteriorating funding condition in terms of higher levels of ex-

pected default or greater difficulty to refinance existing debt. Altman (2020) associated

this with a contractionary credit cycle, which occurs when capital-constrained arbitragers

become sensitive to stocks with high arbitrage costs. Figure 5 shows that periods of rising

delinquency correspond to the increasing (decreasing) importance of arbitrage (financial)

constraint characteristics in the ML portfolio.

In Figure 6, we plotted Credit Sp directly. A downward trending BAA10YM indi-

cates improving funding liquidity, during which riskier borrowers can onload considerable

debt with relative ease. Altman (2020) associated this with an expansionary credit cycle.

Figure 6 shows that periods of declining (rising) Credit Sp correspond to the importance

of financial (arbitrage) constraint characteristics in the ML portfolio. We also plotted

the JPY return against a major currency basket in Figure 6. An upward trending JPY

could indicate deteriorating funding conditions in the US due to investors withdrawing

4https://fred.stlouisfed.org/
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capital from US markets into a reserve currency. When arbitragers become more capital-

constrained, AC characteristics become important in explaining stock returns. Figure 6

shows that periods of a rising JPY correspond to the rising importance of AC character-

istics. Conversely, periods of a falling JPY may be associated with investors returning to

US markets as funding conditions improve. Figure 6 also shows that periods of a falling

JPY correspond to the rising importance of FC characteristics in the ML portfolio.

4.4.2. Factor models’ explanatory power over time

To complement Figures 5 and 6, we conducted two sets of analysis to contrast the

importance of AC and FC characteristics between credit-cycle peaks and troughs. Using

the three indicators of the US credit cycle, we partitioned the testing period into the

following subsamples.

• Trough 1 (T1): July 1998 to July 2003 = 61 months

• Peak 1 (P1): August 2003 to October 2008 = 63 months

• Trough 2 (T2): November 2008 to February 2010 = 16 months

• Peak 2 (P2): March 2010 to February 2015 = 60 months

• Trough 3 (T3): March 2015 to June 2016 = 16 months

First, we examined factor models’ explanatory power on AC and FC portfolio re-

turns over time. When the economy is in credit contraction (i.e., T1, T2, and T3), AC

characteristics become important in explaining cross-sectional stock return. If this is the

case, we expect factor models to exhibit greater explanatory power on AC characteristic

portfolio (ACP) returns relative to FC characteristic portfolios (FCP). Conversely, during

credit expansion periods, factor models should exhibit greater explanatory power on FCP

returns compared with ACP returns. Notably, our purpose is not to identify which factor

model(s) is (are) better at explaining ACP or FCP returns and the respective subsample

periods. Instead, our aim is simply to ascertain whether ACP (FCP) returns are more

important than FCP (ACP) returns during periods of credit contraction (expansion).

We constructed ACP as an equally-weighted portfolio in ivol, max, and min portfolios.

To follow, FCP is an equally-weighted portfolio in cashflow, gxfin, sale of common stock
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(sstk), and gross profit portfolios. As both T2 and T3 had only 16 observations, we

focused our analysis on the T1, P1, and P2 subsamples.

Table 6: Average adjusted-R2 from AC and FC portfolio return regressions against factor models.

The table reports the average adjusted-R2 from regressing arbitrage constraint portfolio (ACP), financial
constraint portfolio (FCP) and the ML portfolio (MLP) return on different factor models for subsamples
July 1998 to July 2003 (T1), August 2003 to October 2008 (P1), and March 2010 to February 2015 (P2).

Average adj-R2 T1 P1 P2
ACP 0.76 0.24 0.21

FCP 0.45 0.28 0.24

MLP 0.35 0.31 0.15

The table reports the average adjusted-R2 from regressing ACP, FCP, and ML port-

folio (MLP) return on different factor models, for subsamples T1, P1, and P2. During

T1, factor models produce an average R2 0.76 on ACP return. In contrast, the average

R2 for FCP was substantially lower at 0.45. However, when we moved the estimation

window from T1 to P1, the average R2 from factor models was now higher for the FCP

return at 0.28, compared with 0.24 for ACP returns. Similarly, for the P2 sample period,

factor models produced a higher average R2 of 0.24 for FCP return compared with 0.21

for ACP return.

4.4.3. Conditional volatility of AC and FC portfolios

Second, if investors become sensitive to AC (FC) characteristics during credit contrac-

tion (expansion), then following the Daniel and Titman (1997) argument, it is possible

for stocks with similar AC (FC) characteristics to covary more strongly during the trough

(peak) subsample periods. If so, we would expect the conditional volatility of ACP σac,t

and FCP σfc,t to affect the ML portfolio’s conditional volatility σmlp,t differently, as the

estimation window moves between credit expansion and contraction subsamples. Specif-

ically, if the covariance structure among high AC stocks is expected to increase during

T1, it is possible that σac,t becomes dominant in σmlp,t. To follow, when the economy

moves into credit expansion (P1 or P2), we expect the conditional covariance structure

among AC stocks to weaken, causing σac,t to decline. At the same time, the covariance

structure among high FC stocks is expected to strengthen, increasing σfc,t and its impact

on σmlp,t.
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If the above mechanism is evident throughout the testing period, it is possible for σac,t

and σfc,t to exhibit GARCH effects that resemble the heatmap clustering of AC and FC

characteristic rankings in the ML portfolio. More importantly, the impact of σac,t and

σfc,t on σmlp,t could vary over time as the US economy transits between credit expansion

and contraction states. To test this, we modeled σac,t, σfc,t and σmlp,t as GARCH(1,1)

processes and performed causality tests based on different sample periods.

For the full testing period, both σac,t and σfc,t were significant in σmlp,t. In the

credit contraction subsample T1, σac,t significantly Granger-caused σmlp,t with a p-value

of 0.068. However, σfc,t was insignificant, with a p-value of 0.485. Conversely, for both

credit expansion subsamples P1 and P2, causality tests confirm that σac,t was no longer

significant in σmlp,t, with p-values of 0.237 and 0.468 respectively. To follow, σfc,t became

significant in σmlp,t at the 10% level, with a p-value of 0.059 for P1 and 0.061 for P2.

Our two findings complement each other. During credit contraction T1, AC char-

acteristics were more important than FC characteristics. This is shown by a relatively

higher adjusted-R2 range from factor models in explaining increased return covariance

among AC stocks, as well as σac,t having a significant causal effect on σmlp,t. FC char-

acteristics became relatively more important during credit expansions P1 and P2. Here,

factor models exhibited a higher R2 range for FCP over ACP, and σfc,t had a significant

causal effect on σmlp,t, but σac,t did not.

4.5. Implications of the main findings

We discussed two implications that are of interest to academics and practitioners.

4.5.1. Evaluation of portfolios formed using ML methods

Given the proliferated usage of ML methods by the investment community in recent

years, our main finding that an ML portfolio exhibits evident time-varying characteris-

tic exposure has a timely and important implication for the evaluation of ML portfo-

lios. As our results show, if an ML portfolio loads alternatively on two distinct sets of

arbitrage- and financial constraint-related characteristics over time, it is unlikely that any

characteristic-sparse factor model can span the full range of dominant characteristics to

which the ML portfolio is exposed at different segments of the investment horizon.

Consistent with Kozak et al. (2020), we noted that any factor model is static in
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its number and type of characteristics, by definition. Over time, new cross-sectional

predictors emerge as the stock-market experiences different economic conditions or market

states. Accordingly, the literature has accumulated an array of factor models that have

been modified, expanded, or augmented to accommodate new anomalies over time. If an

ML portfolio loads on two distinct sets of weakly correlated characteristic portfolios, a

given factor model could explain the portfolio’s characteristic exposure, but only for part

of the evaluation period.

One possible solution is to construct a dynamic factor that can potentially “stalk” the

ML portfolio in the K domain (i.e., the K1 factor). After identifying an ML portfolio’s

dominant characteristics, we aggregated them into a benchmark portfolio, allowing for

different weighting schemes (e.g., equally-weighted, mean-variance optimized (Stambaugh

& Yuan, 2017)). However, this approach requires detailed stock holdings in the ML

portfolio being evaluated, which may not be practically feasible.

Another approach is to exclude all entrenched factors from the factor zoo and see if the

resultant ML portfolio can still generate αMLA everywhere. Although our ML portfolio

does not onload any of the entrenched factors, it is uncertain whether excluding the latter

from the training sample would lead to a different ML portfolio. More importantly, this

approach has limited practical relevance, as it requires dictating how ML models are to

be trained by different fund managers. Lastly, one could use existing funds that utilize

ML methods to construct an ML portfolio index, and use the result to peer-evaluate a

given ML portfolio.

4.5.2. Credit cycle related dominant characteristics and implications for investment styles

and tactical asset allocations

Our finding of a long-run cyclical importance between AC and FC characteristics,

which covary with several economic variables that proxy the US credit cycle, has a po-

tentially relevant applications to investment styles and tactical asset allocation decisions.

1. The alternating importance between AC and FC characteristics offers a reconcili-

ation in the age-old debate between fundamental analysis and technical analysis.

The AC characteristics (i.e., IVOL and Max/Min) are trading-related variables,

whereas FC characteristics (i.e., cashflow, growth in external financing, and earn-

ings) are financial statement variables that indicate a firm’s fundamental value.
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The alternating pattern between AC and FC characteristics in the ML portfolio

suggests that trading and fundamental variables should be viewed as complements,

not substitutes. Both matter in generating significant αMLA, but not all the time

and not at the same time.

2. Our finding that the time-varying importance of AC and FC characteristics is as-

sociated with credit contractions and expansion stages of the US economy, and it

has implications for fund managers’ investments and asset allocation decisions.

Experienced fund managers often base their investment decisions on the current

economic state. Although they may not be able to ex ante pinpoint credit-cycle

peaks and troughs, they have a good sense of whether the economy is currently in

a credit expansion or contraction stage. Our results suggest that during a credit

contraction, portfolio strategies based on trading variables are likely to be more in-

formative than valuation-type strategies. Conversely, when the economy undergoes

credit expansion, valuation-type portfolio strategies are likely to be more successful

in generating abnormal returns against factor models.

3. Lastly, our results provide insights into the conditional covariance structure of asset

classes. Not only does this paper document a visibly evident comovement among

credit spread, JPY returns against a global currency basket, and the gold–silver

ratio (results not reported), we also showed that their fluctuation, co-moves with

the dominance of AC and FC characteristics in the ML portfolio (equity market).

• This suggests that with tactical asset allocations, greater diversification bene-

fits can potentially come from excluding stocks with strong AC and FC char-

acteristics from the equity portfolio. Based on our findings, stocks with AC or

FC characteristics are likely to exhibit stronger covariance with debt, currency,

and precious metal markets, which imply lower diversification benefits.

• For studies on return and volatility spillover across asset classes, our results

suggest that the cross-market trading linkages between equity and other mar-

kets may not occur at the market index level. Rather, it may occur at the

characteristic portfolio level. Hence, rather than equity index returns, using

AC and FC characteristic portfolio returns to estimate the conditional covari-

ance matrix may reveal more insights into the nature of comovements among

equity, debt, currency, and precious metal markets.
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5. Conclusion

In this paper, we undertook a comprehensive out-of-sample analysis to examine the

rise and fall of characteristics in explaining stock returns without imposing any assump-

tions on the underlying factor structure. The analysis involved a large database that

spanned 36 years and 2,500 stocks per year on average for 212 characteristic portfolios

formed based on the level and change in 106 trading and firm variables. Estimations on

the large three-dimensional database were feasibly achieved using ML methods.

For the 1998–2016 testing period, the ML portfolio generated significant αMLA ev-

erywhere. Both PW and PL portfolios exhibited highly significant α across estimation

specifications, and the magnitude and t-stat of α monotonically increased from the PL

to the PW portfolio. To ascertain the source of αMLA, we dissected the ML portfolio

to uncover patterns in its monthly dominant characteristics. Although ML models are

trained on the factor zoo, the ML portfolio alternates its exposure between two small

characteristic subsets that proxy for investor AC and firm FC.

Because the fullK was published by the end of 2016, it is unlikely that these character-

istics could produce significant α against FF5 and Q4 factors. We attributed significant

αMLA everywhere to implied ML portfolio weights that shift between arbitrage and FC

characteristics over time. The rise and fall of characteristics in the factor zoo are very

interesting, which we relate to an economic explanation of cross-sectional stock returns

over a long sample period, beyond factor models. Our conceptual argument and empirical

evidence suggest that the alternating dominance of arbitrage and FC characteristics in

the ML portfolio is associated with contraction and expansion phases of the US credit

cycle.

We developed a method to find dominant characteristics upon which ML portfolios

load. As a limitation of our study, the dominant characteristics and rotation patterns may

be contingent on the particular ML model. A formal theoretical framework to show how

credit cycle affects different characteristics’ ability to explain cross-sectional stock returns

and their dependence on employed ML models, as well as rigorous empirical testing, is

still needed. Even if we establish a micro-foundation for how credit cycles affect cross-

sectional stock returns, we still must empirically harness its explanatory power. This may

be pursued as a conditioning state variable (e.g., investor sentiment) or an economy-wide

funding liquidity factor that is tradable, orthogonal to entrenched factors, and exhibits
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cyclical covariance structures with arbitrage and FC characteristics. Nevertheless, our

research continues.
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