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Abstract

We study a dynamic model of price competition with differentiated products in which

new generations of consumers acquire information about available products from their

friends of previous generations. The social network, which links consumers across gen-

erations, affects the evolution of consumers’awareness of products and firms’ long-term

(steady-state) market shares. Focusing on steady-state equilibria, we examine how the

structure of the social network - including connectivity and homophily - influences market

shares, pricing, and welfare.
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1 Introduction

In markets with differentiated products, consumers are often not fully aware of all available

products. One important channel through which consumers learn about available products is

by learning from friends who have previously purchased one of the products. This process of

learning from friends, or “word of mouth,”greatly affects consumers’purchasing behavior as

shown by empirical evidence.1 Given the importance of learning from friends, it is natural

to study how the linking pattern among friends, or the structure of social networks, affects

competition between firms and the resulting social welfare.

An important feature of the word-of-mouth learning is its dynamic nature. In particular,

today’s market shares, through learning from friends, affect how well informed tomorrow’s con-

sumers are, which in turn affects consumers’purchasing decisions and market shares tomorrow.

This dynamic learning process means that the evolution of consumers’information status and

purchasing behavior are jointly determined. As a result, when setting prices, profit-maximizing

firms will internalize the effect of their current prices on demand in future periods. Moreover,

this also implies that firms will pay extra attention to market shares, because current market

shares not only affect firms’profits today, but also affect future market shares and thus future

profits through the dynamic learning channel. In the real world, firms do seem to empha-

size current market shares relative to current profits. For instance, according to Farris et al.

(2010), 67% of senior marketing managers and executives regard market share as an essential

performance indicator in itself. Anecdotal evidence also suggests that many business leaders

target market share (instead of profit) when setting business strategies (Edeling and Himme,

2018). Moreover, empirical evidence also indicates that market shares are more important for

firms’long run profits in industries where learning from friends plays an important role.2

This article studies how the structure of social networks affects firms’ competition and

social welfare in the presence of the above dynamic learning process. In particular, there

is a sequence of generations of consumers, and the linking pattern between each adjacent

generations is described by a social network. The purchasing behavior of an old generation,

through learning from friends, affects the information status and thus the purchasing behavior

of the next generation, and so forth. The structure of the social network is important in that

it influences the joint evolution of consumers’ information status and purchasing behavior.

By incorporating this dynamic learning process, our article makes the following contributions.

1For empirical evidence regarding the effect of “word of mouth,”see Keaveney (1995) on banking, Chevalier
and Mayzlin (2006) on book sales, Chintagunta et al. (2010) on entertainment, and Luca (2016) on restaurant
choices.

2As documented in Edeling and Himme (2018), the market share—financial performance elasticity is higher
in markets where learning from friends plays an important role, such as B2C firms (relative to B2B firms),
manufacturing firms (relative to service firms), and emerging markets (relative to the US markets).
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First, our article provides an alternative rationale as to why firms seemingly overemphasize on

market shares: with word-of-mouth learning among consumers, current market shares affect

firms’future demand.3 In doing so, we also shed light on how this emphasis on market shares

varies across industries/products, depending on the importance of word-of-mouth learning

and the relevant social network structure. Second, regarding the impacts of social network

structures on firms’ competition and social welfare, our article qualitatively overturns the

predictions that are drawn from the earlier static analysis (Campbell, 2019), which will be

elaborated later.

Our model has two long-lived firms located at the opposite ends on a Hotelling line and

competing in prices. We allow the two firms to be asymmetric. Each generation of consumers

is uniformly distributed on the Hotelling line and lives for one period only. Each consumer

has a unit demand, and a necessary condition for a consumer to buy a product is that he is

aware of that product. For each generation, a fixed proportion of consumers is exogenously

fully informed (aware of both firms’products). For the remaining (endogenous) consumers,

they learn about the existence of products from their friends of the previous generation: an

endogenous consumer becomes aware of a product if he has a friend of the previous generation

who purchased that product.4 As a result, some endogenous consumers are partially informed

(aware of one product only). The number of friends a consumer has is governed by the structure

of the social network. In the basic model, we focus on the case of random connections, in which

the location of each friend is uniformly drawn at random. We then study the case of homophily,

under which friends are more likely to have similar locations.

The structure of the network determines how the purchasing behavior of one generation

translates into the distribution of information status of the next generation, which in turn

determines the purchasing behavior of that generation. We focus on steady-state (long-term)

market shares. Firms set prices at the very beginning, which remain fixed in all later periods.

Firms’prices induce steady-state market shares through learning from friends, and we assume

that firms’objectives are to maximize their steady-state (long-term) profits.5

We show that the structure of the network affects firms’pricing decisions in a non-trivial

way through the dynamic social learning process. In our model, the firms compete not only

for the fully informed consumers in the current period, but also for the partially informed

consumers in future periods. By setting a lower price and expanding its full-information market

share, through dynamic social learning, a firm gains more partially informed consumers who

are aware of its product only in future periods. Interpreting more broadly, in our model
3The existing literature (see the references in Bhattacharya et al., 2022) identifies three main channels through

which higher market shares might positively affect firms’profitability: market power, operating effi ciency, and
quality signaling. Our article suggests an alternative channel of word-of-mouth learning.

4We assume that each consumer has at least one friend and thus is aware of at least one product.
5Both assumptions, perfectly patient firms and fixed prices, will be relaxed in later extensions.
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current market share serves as a sort of “advertising” through the word-of-mouth learning:

a bigger market share today means more consumers will be aware of a firm’s product in the

future, which implies an even bigger market share in the future. Due to this channel, the

intensity of competition crucially depends on how sensitive the steady-state demand is to the

full-information market share, which in turn depends on the structure of the social network.

Our formal analysis mainly focuses on the case with symmetric firms. In the basic model

with random connections, we derived the following main results. First, under general networks

competition is more intense compared to the Hotelling benchmark. Second, the intensity

of competition is non-monotonic in network connectivity (the number of friends consumers

have). In particular, under the least connected network (the single-friend network under which

each consumer has exactly one friend) and the most connected network (the infinite-friend

network under which each consumer has an infinite number of friends), the equilibrium price

is the highest and coincides with that in the Hotelling benchmark. Under any other generic

network, the equilibrium price is lower, and the equilibrium price is non-monotonic in network

connectivity.6 Finally, consumer surplus is also non-monotonic in network connectivity. These

results may have important implications for empirical research, especially for industries (or

products) in which word-of-mouth learning is important, as using the sensitivity of current-

period demand to price would underestimate the sensitivity of the (long-run) demand that

firms actually care about.

The above results are mainly driven by the dynamic learning process. Due to its pres-

ence, firms also compete for partially informed consumers in the future by affecting the full-

information market share. This leads to more intense competition in our model than in stan-

dard Hotelling model where firms compete only for fully informed consumers in one period.

The dynamic learning process is also responsible for our non-monotonicity result. In particular,

an increase in network connectivity induces two effects. First, as the network becomes more

connected or each consumer has more friends, more consumers become fully informed and there

are fewer partially informed consumers. Consequently, the competition for the partially in-

formed consumers in future periods is softened. We refer to this as the volume effect of network

connectivity. On the other hand, network connectivity also has the following ratio effect. As

the network becomes more connected, for the same increase in a firm’s full-information market

share (from the equal split in equilibrium), among the partially informed consumers the ratio

of the consumers who are informed of the product of the firm in question only to those who

are informed of the other firm’s product only increases. This ratio effect tends to make the

steady-state demand more sensitive to the full-information market share and intensifies com-

petition. These two effects work in opposite directions, giving rise to the non-monotonicity of

6Among the k-friend networks (each consumer has exactly k friends), the price is the lowest under the
two-friend network and increases in k for k ≥ 2.
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the intensity of competition in network connectivity.

The non-monotonicity of consumer surplus in network connectivity is mainly due to the

non-monotonicity of price. Intuitively, as the network becomes more connected, each consumer

gets “more”information, and thus more consumers are fully informed and fewer consumers buy

“wrong”(less preferred) products. This information effect improves total welfare and consumer

surplus. However, network connectivity also affects the equilibrium price. Because the equilib-

rium price is non-monotonic in network connectivity, consumer surplus is also non-monotonic.

In particular, under relatively well-connected networks, the equilibrium price increases in con-

nectivity, and this pricing effect dominates the information effect so that overall consumer

surplus is decreasing in network connectivity.

We also find that an increase in the proportion of exogenously fully informed consumers

leads to a higher equilibrium price. The underlying reason is that, with a larger proportion

of exogenously fully informed consumers, there are fewer partially informed consumers in the

future to compete for, which softens competition. This is a surprising result as it is the opposite

to the prediction in standard models (e.g., Varian, 1980), where more fully informed consumers

intensifies competition and lowers prices. The reason behind different predictions is again that

in standard models firms compete for fully informed consumers only, whereas in our dynamic

model firms also compete for partially informed consumers due to dynamic learning.

In the model with homophily, our main finding is that the equilibrium price is monotonically

increasing in the degree of homophily; that is, homophily softens competition. As a result,

consumer surplus could be decreasing in the degree of homophily. Again, the main driving force

is the dynamic learning process. Intuitively, homophily leads to the following information effect:

with homophily consumers are more likely to be aware of the “right”(preferred) products, as

their friends are more likely to have similar horizontal tastes and thus have bought the “right”

products; in other words, the “quality” of information received from friends improves. This

means that, even if a firm cuts price and expands its full-information market share, it will

induce fewer partially informed consumers to “wrongly”buy its product. Therefore, a higher

degree of homophily softens the competition for partially informed consumers and raises price.

When firms are asymmetric, we find that the dynamic learning process amplifies the advan-

tage of the advantaged firm (say firm 1). Specifically, compared to the Hotelling benchmark,

in equilibrium firm 1 has a larger market share and firm 2 has a smaller market share and a

lower price. The underlying reason is that with a full-information market share bigger than

1/2, firm 1 can gain additional partially informed consumers through the dynamic learning

process, which also forces firm 2 to reduce its price. We also find that homophily dampens

the advantage of the advantaged firm: firm 1’s equilibrium market share is decreasing in the

degree of homophily. The underlying reason is again that homophily dampens the dynamic
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learning effect among partially informed consumers.

Finally, we also study two extensions. In the first extension, firms have a general discount

factor and they maximize discounted profits. In the second extension, we allow firms to change

prices across periods in a simple two-period model. In both settings, our main result, the non-

monotonicity of prices in network connectivity, is largely robust. The assumption of fixed

prices across periods will be further discussed in Section 7.

Related Literature The closest article to ours is Campbell (2019), who studies how the

social network structure affects firms’competition and social welfare in a Hotelling model with

consumers learning from friends about the available products. The main difference is that his

model is essentially static; there are only two generations, the purchasing behavior of the old

generation is exogenously given, and firms compete only for the new generation of consumers

once. In contrast, our model is dynamic, with the joint evolution of consumers’information sta-

tus and purchasing behavior across generations endogenously determined. Another difference

is that Campbell (2019) focuses solely on symmetric firms, whereas our article also considers

asymmetric firms.
As argued in the Introduction, a dynamic model is a better fit for real-world markets.

Moreover, by making the model dynamic, our article generates predictions that are qualita-

tively different from those in Campbell (2019). Specifically, with random connections, in his

model competition is less intense compared to the Hotelling benchmark, and a more connected

network always intensifies competition and improves consumer welfare. With homophily, his

model predicts that the degree of homophily does not affect the equilibrium price and ho-

mophily always improves consumer welfare. These results are qualitatively different from the

predictions of our model. The differences in predictions are mainly driven by the dynamic

learning channel in our model. With the dynamic learning process, firms also compete for

partially informed consumers in the future by affecting the full-information market share, a

feature absent in Campbell’s (2019) static analysis. In our extension with a general discount

factor δ, Campbell (2019) can be incorporated as a special case with δ = 0. Finally, incorpo-

rating the dynamic learning effect is also important for empirical researchers and competition

authorities, the ignoring of which could lead to misleading estimations.7

More broadly, our article is related to several strands of literature in industrial organization

that study settings in which some consumers are not fully informed about available products

or prices. One strand of literature studies consumers’ search for product information (e.g.,

Varian, 1980; Stahl, 1989). Another strand considers firms’advertising strategies in informing

7For instance, ignoring the dynamic learning effect will underestimate the intensity of competition between
firms; by attributing lower observed prices to a lower degree of horizontal differentiation, it also leads to under-
estimation of the degree of horizontal differentiation.
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consumers about their products (Butters, 1977; see Bagwell, 2007, for an excellent survey). In

terms of modeling, Grossman and Shapiro (1984) is particularly related. In their model with

differentiated products, firms need to send costly advertisements in order to inform consumers

about their products. Their focus is on firms’advertising strategy and its impact on pricing

and welfare.

There is a large literature on learning through word of mouth. For instance, Smallwood and

Conlisk (1979) consider a model in which new consumers, when selecting a new product, sample

the products used by the existing consumers in the population and mimic their choices; and

they study how firms’current market shares affect long-run adoption among consumers. Ellison

and Fudenberg (1995) and Banerjee and Fudenberg (2004) study how word-of-mouth learning

affects agents’choice between alternatives with stochastic payoffs in non-market environments.8

Overall, in this literature how the structure of the social network affects the market outcomes

received little attention.

Our article is also related to a growing literature on industrial organization which studies

firm behavior when either information is diffused through a social network or there is con-

sumption externality between neighbors (see Bloch, 2016, for a survey). Some articles consider

monopoly pricing (Bloch and Querou, 2013; Campbell, 2013; Fainmesser and Galeotti, 2016),

some consider monopoly advertising/seeding (Galeotti and Goyal, 2009; Campbell et al., 2017),

and some study oligopoly advertising/seeding (Bimpikis et al., 2016; Goyal et al., 2019). For

articles studying oligopoly pricing, Aoyagi (2018), Chen et al. (2018), and Fainmesser and

Galeotti (2020) consider models in which there are direct consumption externalities between

neighboring consumers and firms are able to price discriminate based on consumers’network

positions. Different from those models, in our model there is no consumption externality and

we focus on the diffusion of product information via a social network. Galeotti (2010) de-

velops a duopoly model in which firms produce a homogeneous good and consumers can get

informed about prices by two channels: costly search and learning from friends. He also finds

that the impact of network connectivity on the expected price is non-monotonic. However,

the non-monotonicity result in his model is different from ours both in terms of directions

and underlying mechanisms (see Section 3.2 for details). Relatedly, Kovac and Schmidt (2014)

characterize market share dynamics in a Bertrand model with homogeneous products in which

consumers learn about firms’prices from friends and firms play mixed pricing strategies. Dif-

ferent from these two models in which products are homogeneous and consumers learn prices

from their friends, in our setting firms produce differentiated products and consumers learn

about the existence of available products from their friends.

More recently, Campbell et al. (2020) developed a model in which consumers learn about

8Other dynamic pricing models with word-of-mouth learning include Rob and Fishman (2005) and Berge-
mann and Valimaki (2006).
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the quality of experience goods from their friends. Their model and ours share some similar

features. For instance, consumers are modelled as overlapping generations with the old gener-

ation serving as the source of information, and both articles focus on steady state. The main

difference lies in different focus. Specifically, their article focuses on learning about qualities

and does not consider price competition. In contrast, our article focuses on learning about the

existence of available products and its impact on price competition.

Finally, in terms of the role played by market shares, our article is also related to the

dynamic pricing literature with network externalities (e.g., Farrell and Saloner, 1986; Mitchell

and Skrzypacz, 2006; Chen et al., 2009; Cabral, 2011). The general insight of this literature

is that, relative to static competition, firms set lower prices in dynamic competition in order

to expand their installed consumer bases. This is similar to our result that competition is

generically more intense in the dynamic model than in the static Hotelling model. The main

difference is that in this literature the network externality results from direct consumption ex-

ternalities, whereas in our model the “network externality”(a bigger market share today leads

to an even bigger market share in the future) is indirect and informational, which is generated

through consumers’learning from friends across generations. This difference leads to different

predictions. For instance, although in that literature stronger consumption externalities lead

to more intense competition, in our setting the intensity of competition is non-monotonic in

network connectivity.

The rest of the article is organized as follows. Section 2 sets up the model. The basic model

with symmetric firms and random connections is analyzed in Section 3. Section 4 studies the

case with homophily. In Section 5 we consider asymmetric firms; and Section 6 studies two

extensions: one with impatient firms and the other with prices changing across periods. Section

7 contains concluding remarks. All the proofs are relegated into the Appendix or the Online

Appendix.9

2 Model

Time is discrete and denoted as T , and the horizon is infinite. There are two infinitely lived

firms, firm 1 and 2, competing with each other in a Hotelling model; they are located at the two

end points (firm 1 at location 0). In each period, there is a new generation of consumers active

in the market, and they exit the market after one period. We index consumers by generation T .

Each generation of consumers is of measure 1, and they are uniformly distributed on [0, 1], with

a consumer’s location indexed by x ∈ [0, 1]. Each consumer has a unit demand. A consumer

at location x gets utility V + ∆ − tx from buying firm 1’s product, and V − t(1 − x) from

9The Online Appendix is available at https://sites.google.com/site/huanxingyang1999/home/publications.
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buying firm 2’s product. Here t is the per-unit transportation cost, and ∆ ≥ 0 represents firm

1’s advantage over firm 2. The marginal cost of each firm is normalized to 0. We assume V is

large enough so that each consumer will buy exactly one product, and the question is which

one. Finally, we assume that ∆ < t, which ensures that both firms are active in the market.

Next we introduce consumers’ information status. For each generation T , a λ ∈ (0, 1)

proportion of consumers, independent of location x, are aware of both products through an

exogenous process (for instance, through consumer search or firms’advertising campaigns).10

The remaining 1−λ proportion of consumers, which we call endogenous consumers, are initially
unaware of either products. They learn about the existence of a product from their friends of

the previous generation T−1 (old consumers who already purchased). The pattern of the social

connections or friendship network is described by a distribution {pk}, where pk is a consumer’s
probability of having k friends of the old generation. We assume that p0 = 0, which means

that each consumer has at least one friend, thus is informed of at least one product. By having

a friend of the old generation, a new consumer becomes informed of the product purchased by

that friend in the last period (but not the other product), even if that friend is aware of both

products. This assumption is reasonable for two reasons. First, observing a friend’s action

is easier than transmitting all the knowledge that the friend has. Second, in case that the

friend is aware of both products, given that he purchased a particular product he must favor

that product. This means that in communication he is more likely to mention or advocate the

product he purchased only. Given this assumption, if a new consumer has two friends of the

old generation who purchased different products, then the new consumer becomes aware of

both products (i.e., fully informed). If all friends of a new consumer bought the same product,

say product 1, then the new consumer is aware of product 1 only.11

In the basic model, we will focus on the case of random connections. That is, the friends of

a new consumer are uniformly drawn at random in terms of locations, independent of the new

consumer’s own location. We then study homophily in an extension, in which case a consumer

and her friends are more likely to have similar locations. Denote ψT (x) as the probability

that a consumer of generation T at location x buys from firm 1, and ψT as the proportion of

consumers of generation T who buy product 1. That is, firm 1’s market share is ψT and that

of firm 2 is 1− ψT in period T .
Firms know the structure of the network, but does not observe the locations of individual

consumers. In the very beginning (say period 0), the two firms set prices P1 and P2 simultane-

10A positive fraction of exogenously fully informed consumers is needed to ensure that the steady-state market
shares are non-degenerate (both firms have positive market shares). See footnote 12 for details.
11The feature of overlapping generations is only a convenient modeling device. More generally, in each period

T a fraction of new consumers arrive and could consult their friends who already bought the products in earlier
periods (all old consumers, not necessarily the ones who arrived in period T − 1). This general setting will be
discussed in Section 7.
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ously, which remain fixed in all later periods (this assumption will be relaxed in Section 6.2 and

discussed further in Section 7). Given the friendship network across generations, consumers’

information status about the products and the market share ψT , in general, will evolve across

periods through learning from friends. We will focus on the steady-state (or long-term) market

share, which satisfies ψT+1 = ψT ≡ ψ. In short, given P1 and P2, through learning from friends

the market share will eventually reach a steady state. We assume that each firm’s objective is

to maximize its steady-state profit. One justification for this assumption is that firms are very

patient.12 In Section 6, we consider the case of impatient firms with a general discount factor

δ.

Our model is closely related to Campbell (2019), with two main differences. First, Campbell

(2019) considers symmetric firms (∆ = 0) only, whereas we also consider asymmetric firms.

Second and more importantly, in Campbell (2019) firms compete with each other in one period

only, and the information status of the old-generation consumers is exogenously given. In

contrast, in our model firms compete over time and the information status of each generation

is endogenously derived. In terms of the technical analysis of the steady state, our model is

also related to Campbell et al. (2019), which study how the structure of the social media

network affects the prevalence of different types of media content. They also focus on steady

state, under which the frequency that each type of message is forwarded remains unchanged

over time. However, the research questions that our article addresses are very different from

their article’s.

To facilitate later comparisons, here we compute the equilibrium outcome in the standard

Hotelling model (λ = 1 in our setting) as a benchmark. Using superscript H to denote the

Hotelling outcomes, the equilibrium prices are PH1 = t+ ∆
3 and P

H
2 = t−∆

3 , and the equilibrium

market share of firm 1 is x̂H = 1
2 + ∆

6t .

3 Random Connections

In this section we study the case of random connections. We first characterize steady-state

equilibrium, and then examine the impact of network connectivity on equilibrium outcome.

Steady-state equilibrium

First observe that for each generation, a consumer’s information status can be one of the

following: fully informed, aware of product 1 only, or aware of product 2 only. With random

12Specifically, firm 1’s average per-period profit (firm 2’s is similar) is π1(P1, P2) = (1− δ)
∑∞
T=1 δ

T−1P1ψT ,
where δ is the discount factor. When δ → 1, π1(P1, P2) converges to P1ψ, the steady-state per-period profit.
Otherwise, this assumption is still reasonable if, given any P1 and P2, the steady state is reached rather quickly.
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connections, a consumer’s information status is independent of her location x. Our first step

is to derive the steady state market share as a function of P1 and P2. For this purpose, we

need to trace the distribution of consumers’ information status across periods. Let φF,T be

the proportion of consumers of generation T who are fully informed, and φi,T , i = 1, 2, be the

proportion of consumers of generation T who are aware of product i only.

Define x̂ as the cutoff consumer (in terms of location) who is fully informed and indifferent

between product 1 and 2. Because consumers live for one period only, this x̂ coincides with

the cutoff in the Hotelling model:

x̂ =
1

2
+
P2 − P1 + ∆

2t
. (1)

Because firm 1 has an advantage with ∆ ≥ 0, in equilibrium, x̂ ∈ [1/2, 1). Note that x̂ is also

firm 1’s market share if all consumers were fully informed. Given ψT , x̂, and λ, we have the

following transition equations:

φ1,T+1 = (1− λ)
∑
k

pkψ
k
T , φ2,T+1 = (1− λ)

∑
k

pk(1− ψT )k,

φF,T+1 = 1− φ1,T+1 − φ2,T+1 = λ+ (1− λ)[1−
∑
k

pk[ψ
k
T + (1− ψT )k],

ψT+1 = φ1,T+1 + x̂φF,T+1.

In the first (second) equation, the consumers in generation T + 1 who are informed of

product 1 (2) only must be someone: (i) who are not exogenously fully informed, and (ii)

whose friends of generation T all bought product 1 (2) only. In the third equation, the fully

informed consumers in generation T +1 include consumers who are exogenously fully informed

and endogenous consumers whose friends of generation T bought different products. In the

last equation, the fraction of consumers buying product 1 in generation T + 1 consists of two

groups: consumers who are aware of product 1 only, and the fully informed consumers who

prefer product 1.

Combining the above equations, we have the following transition equation, which specifies

ψT+1 as a function of ψT :

ψT+1 = x̂+ (1− λ)
∑
k

pk[(1− x̂)(ψT )k − x̂(1− ψT )k] ≡ H(ψT ). (2)

The three terms of H(ψT ) in (2) can be interpreted as follows. The first term x̂ is firm 1’s

full-information market share. The second term is the fraction of consumers who “wrongly”
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bought product 1 (they prefer firm 2’s product but are informed of product 1 only); firm 1

gains this portion of market share relative to the full-information benchmark. Similarly, the

third term is the fraction of consumers who “wrongly”bought product 2; and firm 1 loses this

portion of market share relative to the full-information benchmark. Taken together the second

and third terms, it represents firm 1’s net gain of market share among the partially informed

consumers relative to the full-information benchmark.

In the steady state, ψT+1 = ψT ≡ ψ; that is, ψ = H(ψ). By (2), the steady-state equation

can be explicitly written as

ψ = x̂+ (1− λ)
∑
k

pk[(1− x̂)ψk − x̂(1− ψ)k] ≡ H(ψ). (3)

Note that P1 and P2 affect the steady-state market share ψ only through their effects on x̂.

The next lemma shows that x̂ induces a unique steady-state market share ψ.

Lemma 1 Given a full-information market share (for firm 1) x̂ ∈ [1/2, 1), there is a unique

steady-state market share ψ, which is globally stable and satisfies ψ ∈ [x̂, 1). Moreover, ψ is

strictly increasing in x̂.

The result that ψ ≥ x̂ is intuitive. To see this, suppose firm 1’s market share equals

x̂ ≥ 1/2. Then, due to learning from friends, there will be (weakly) more consumers who

wrongly purchase product 1 than those who wrongly purchase product 2, as firm 1 has a larger

full-information market share. This indicates that firm 1’s steady-state market share ψ would

be (weakly) bigger than x̂.

The relationship between ψ and x̂ depends on the network structure {pk}. To make the
relationship more transparent, we will pay special attention to regular networks under which

{pk} is degenerate. In particular, we define a k-friend network as a regular network under
which every consumer has exactly k friends (pk = 1 for some k ≥ 1). Among k-friend networks

there are two extreme networks. The first one is the single-friend network, under which each

consumer has exactly one friend (p1 = 1). The second one is the infinite-friend network, under

which each consumer has infinitely many friends (k →∞). We use the term generic networks

for networks other than the single-friend network and the infinite-friend network.13 The next

lemma sheds some light on the relationship between ψ and x̂ under different networks.

Lemma 2 (i) Under the single-friend network or the infinite-friend network, the steady-state
market share ψ equals to x̂, the full-information market share. (ii) Under generic networks,

13Under any generic network, if λ = 0, then by (3) it can be verified that ψ = 1 whenever x̂ ∈ ( 1
2
, 1).
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ψ > x̂ if x̂ > 1/2. (iii) Under k-friend networks, fixing x̂ ∈ (1/2, 1), ψ strictly decreases in k

if k ≥ 2.

Lemma 2 holds the key in understanding later results. The result regarding the infinite-

friend network is quite intuitive: under this network, all consumers in each generation are fully

informed, and therefore the steady-state market share ψ equals to the full-information one,

x̂. Under the single-friend network, when ψ = x̂, the fraction of endogenous consumers who

wrongly buy product 1 exactly equals to those who wrongly buy product 2, both of which are

(1 − x̂)x̂. Thus firm 1’s steady-state market share is x̂.14 For k-friend networks with k ≥ 2,

as k increases (the network becomes more connected), the total number of partially informed

consumers ((1−λ)[ψk+(1−ψ)k]) decreases, but the ratio of the number of consumers informed

of product 1 only to those informed of product 2 only, ( ψ
1−ψ )k, increases because ψ > x̂ > 1/2.

The first effect tends to decrease firm 1’s steady-state market share, and the second effect

works in the opposite direction. It turns out that when k ≥ 2, the first effect dominates,

and firm 1’s net gain of market share among the partially informed consumers decreases in k.

Therefore, among k-friend networks, the two-friend network leads to the biggest steady-state

market share for firm 1.

Now we are ready to characterize steady-state equilibria, and we will focus on pure strat-

egy equilibria. Firm 1’s and firm 2’s profits in steady state are π1(P1, P2) = P1ψ(x̂) and

π2(P1, P2) = P2[1 − ψ(x̂)], respectively. Each firm i chooses Pi, given Pj , to maximizes its

steady-state profit. The first-order conditions yield (with P ei being the equilibrium prices)

P e1 =
2tψ
dψ
dx̂

and P e2 =
2t(1− ψ)

dψ
dx̂

, (4)

where, by (3),
dψ

dx̂
=

1− (1− λ)
∑

k pk[(ψ)k + (1− ψ)k]

1− (1− λ)
∑

k kpk[(1− x̂)(ψ)k−1 + x̂(1− ψ)k−1]
. (5)

Notice that dψ/dx̂ > 0 (by Lemma 1) captures the sensitivity of ψ to x̂ and largely deter-

mines the intensity of competition. Combining (1), (4), and (5), we have the following pricing

equation:

x̂ =
1

2
+

∆

2t
− (2ψ − 1)

1− (1− λ)
∑

k kpk[(1− x̂)(ψ)k−1 + x̂(1− ψ)k−1]

1− (1− λ)
∑

k pk[(ψ)k + (1− ψ)k]
. (6)

14Specifically, for k-friend networks,

H(x̂)− x̂ = (1− λ)(1− x̂)x̂[x̂k−1 − (1− x̂)k−1].
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Equations (3) and (6), with two unknowns (x̂ and ψ), jointly determine steady-state equilibria.

Denote (x̂e, ψe) as an equilibrium pair of (x̂, ψ).15

Proposition 1 There is a unique solution satisfying both the steady-state equation (3) and the
pricing equation (6), with the equilibrium full-information market share x̂e ∈ [1

2 ,
1
2 + ∆

2t ]. If the

two firms are symmetric (∆ = 0), then both x̂e and the equilibrium steady-state market share

ψe are symmetric: x̂e = ψe = 1/2. The solution is the unique steady-state equilibrium under

either of the following conditions: (i) the network {pk} is the single-friend network or a well-
connected network;16 (ii) the fraction of exogenously fully informed consumers λ is relatively

large.

Due to the coexistence of fully informed consumers and partially informed consumers,

it is well-known that firms’ profit functions may not be well-behaved. In particular, firms

may charge high prices targeting partially informed consumers only. This means that the

first-order conditions may not be suffi cient, and may cause the non-existence of pure strategy

equilibria. Conditions (i) and (ii) specified in Proposition 1 are suffi cient conditions to avoid

this problem: under either condition ψ(x̂) is convex when x̂ ≤ 1/2 and concave when x̂ ≥ 1/2,17

so that the second-order conditions are satisfied globally. Intuitively, under either condition

in the limit the model converges to the Hotelling benchmark. These two conditions are far

from being necessary for the existence of equilibrium. Even when λ is relatively small so that

the second-order conditions are not satisfied globally, each firm’s profit function could still

be single-peaked, meaning that the solution satisfying the first-order conditions is indeed the

equilibrium.18

The impact of network connectivity

In this subsection we focus on symmetric firms with ∆ = 0. As Campbell (2019) focuses solely

on symmetric firms, the comparison in this subsection will reveal clearly how introducing

steady state (or long-term) demand affects results. With ∆ = 0, the equilibrium is symmetric

with x̂e = ψe = 1/2, P e1 = P e2 ≡ P e = t/(dψdx̂ |x̂=1/2), and (5) becomes

dψ

dx̂
|x̂=1/2 =

1− (1− λ)
∑

k pk(
1
2)k−1

1− (1− λ)
∑

k kpk(
1
2)k−1

. (7)

15From (x̂e, ψe), we can recover the equilibrium prices P e1 and P
e
2 based on (4) and (5).

16A network is well-connected if each consumer has at least k friends, with k being large.
17See Lemma A1 in the Online Appendix.
18Consider the following examples. Network 1 has p1 = p2 = p3 = 1/3 and network 2 has p2 = p3 = p4 =

p5 = 1/4, with λ = 1/4, t = 1, and ∆ being either 0 or 1/4. For each case (four cases in total), firm i’s profit
function πi(Pi, Pje) is single-peaked at Pie, though πi(Pi, Pje) is convex in Pi when Pi is large.
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The expression of the equilibrium price reveals that the intensity of competition depends on

the sensitivity of ψ to x̂, evaluated at x̂e.

To examine how the network structure affects the equilibrium price, we define connectivity

in terms of first-order stochastic dominance (FOSD): a network {p′′k} is more connected than
{p′k} if {p′′k} FOSD {p′k}.

Proposition 2 The equilibrium price is not monotonic in network connectivity. In particular,
the following results hold. (i) Under either the single-friend network or the infinite-friend

network, the equilibrium price P e = t, the transportation cost, but under any other generic

network P e < t. (ii) Among the k-friend networks, the equilibrium price P e is the lowest

under the 2-friend network: it decreases when k increases from 1 to 2 and strictly increases in

k for k ≥ 2.

Part (i) of Proposition 2 shows that under generic networks competition is more intense than

in the standard Hotelling model. This is because of the dynamic learning effect in our model:

a bigger market share today (obtained by cutting price) will translate into a bigger steady-

state market share in the future through the dynamic learning channel. As mentioned earlier,

this is reminiscent of the result in the dynamic pricing literature with network externalities.

The difference is that in our model the “network externality” is indirectly generated through

consumers’learning from friends across generations.

The non-monotonicity result in part (ii) can be understood in light of part (iii) of Lemma 2.

In more general terms, we can decompose the net effect of network connectivity on dψ/dx̂ into

two effects: the volume effect and the ratio effect. Specifically, as the network becomes more

connected, more consumers are fully informed and the fraction of partially informed consumers

decreases. This volume effect tends to reduce the sensitivity of ψ to x̂ and soften competition,

as there are fewer partially informed consumers to compete for. On the other hand, a more

connected network means that, for the same (non-equilibrium) market share ψ > 1/2, the

ratio of the number of consumers informed of product 1 only to those informed of product 2

only will increase.19 This means that firm 1 can get a bigger market share among the partially

informed consumers through dynamic social learning. This ratio effect tends to increase the

sensitivity of ψ to x̂ and intensify competition. Because the volume effect and the ratio effect

work in opposite directions, the equilibrium price is not monotonic in network connectivity.

Among the k-friend networks, it turns out that the ratio effect dominates when k increases

from 1 to 2, and the volume effect dominates when k ≥ 2.

Proposition 2 is qualitatively different from the corresponding result in Campbell (2019),

where the equilibrium price monotonically decreases as the friendship network becomes more

19As mentioned earlier, under k-friend networks this ratio is ( ψ
1−ψ )k, which is increasing in k when ψ > 1/2.
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connected. The main reason for the difference is that in Campbell’s (2019) one-period model,

firms compete for fully informed consumers only. As the network becomes more connected,

because the fraction of fully informed consumers increases, competition intensifies and the

price decreases. In contrast, in our model firms are competing not only for fully informed

consumers in the current period, but also for partially informed consumers in future periods.

A bigger market share of firm i today (achieved by setting a lower price), through the friendship

network, will lead to more (fewer) partially informed consumers who are informed of product

i (j) only in the next period, which translates to an even bigger market share in the future.

This dynamic channel is absent in Campbell (2019).

In a duopoly model with homogeneous goods, Galeotti (2010) also shows that the aver-

age equilibrium price is non-monotonic in network connectivity. As mentioned earlier, in his

model consumers can get fully informed through costly search and learning from friends. As

consumers have more friends, its direct effect is to increase the fraction of fully informed con-

sumers, given any fixed level of search effort. However, it also crowds out consumers’search

effort as the free-riding problem becomes more severe, which tends to reduce the fraction of

fully informed consumers. These two opposite effects lead to the non-monotonicity of price

in network connectivity.20 The non-monotonicity result in our article is due to a different

mechanism: an increase in connectivity leads to the volume effect and the ratio effect about

the partially informed consumers, and the combination of these two opposite effects generates

non-monotonicity. Another qualitative difference is that in Galeotti (2010) the relationship

between price and network connectivity exhibits an inverse U shape (the price reaches the

maximum for some intermediate level of connectivity), whereas in our model the relationship

is U shape (the price reaches the minimum for an intermediate level of connectivity). This

is because in his (static) model firms compete for fully informed consumers only, whereas in

our model firms also compete for partially informed consumers due to the dynamic learning

channel.

To capture more precisely the dynamic learning effect, in the symmetric equilibrium we

compute the sensitivity of firm 1’s current period demand to its price, |∂Q1∂P1
|, and the sensitivity

of firm 1’s steady-state (long-run) demand to its price, | ∂ψ∂P1 |. In particular,

|∂Q1

∂P1
| =

1− (1− λ)
∑

k pk(
1
2)k−1

2t
,

where the numerator is precisely the fraction of fully informed consumers, as in the current

20 In a related article on monopoly advertising/seeding, Galeotti and Goyal (2009) show that the relationship
between the level of advertising and network connectivity is also non-monotonic. The reason is that advertising
and word of mouth (WOM) can be substitutes or complements, depending on the cost of advertising.
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period only those consumers are sensitive to prices. Using (7), we have

| ∂ψ
∂P1
| =

|∂Q1∂P1
|

1− (1− λ)
∑

k kpk(
1
2)k−1

> |∂Q1

∂P1
|.

Observe that the long-run demand is more sensitive to price than the current-period demand is,

and the difference between the two sensitivities exactly captures the dynamic learning effect.

This also suggests that using the sensitivity of current-period demand to price in empirical

studies to fit firms’behaviors could be misleading. In the real world, what firms try to maximize

is more likely to be long-run profits rather than short-run profits, and thus the sensitivity of

long-run demand to price is a more appropriate measure. In other words, using the sensitivity

of current-period demand would underestimate the sensitivity of the (long-run) demand that

firms actually care about. Our model also provides a justification for firms’seemingly puzzling

overemphasis on current market shares over the current profits (see the empirical evidence

mentioned earlier in the Introduction). This is because, due to the dynamic learning effect, a

firm’s current market share also affects the evolution of its future market share and thus its

long-run profits.21

Proposition 3 Suppose networks are generic. (i) If network {p′′k} FOSD network {p′k} and
the probabilities of having a single friend is the same under the two networks (p′′1 = p′1), then the

equilibrium price is higher under network {p′′k} than under network {p′k}. (ii) The equilibrium
price is increasing in λ, the fraction of exogenously fully informed consumers.

For generic (non-regular) networks, the relationship between network connectivity and

equilibrium price follows a pattern similar to the one under regular (the k-friend) networks.

Part (i) of Proposition 3 shows that, if a FOSD change in connectivity does not reduce p1 (thus

puts more probabilities on higher number of links), then it softens competition and increases

the equilibrium price. However, if a FOSD change reduces p1, then it may intensify competition

and reduce prices (see Example 1). For the same reason, the equilibrium price is not monotonic

with respect to changes of mean-preserving spread (see Example 2).22

Part (ii) of Proposition 3 is a surprising result. In standard models of price competition

(such as the search models of Varian (1980) and Stahl (1989)), an increase in the fraction

of exogenously fully informed consumers typically intensifies competition and reduces prices

21Our explanation is different from Bendle and Vandenbosch (2014), which explains why competitor orien-
tation can persist and even thrive based on evolutionary games. Our explanation is also consistent with the
empirical finding mentioned in footnote 2.
22 In Campbell (2019), a mean-preserving spread in {pk} always softens competition and increases prices.
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(Anderson and Renault (2000) is an exception).23 By contrast, in our model the result is the

opposite. The underlying reason, as mentioned earlier, is that firms in our model also compete

for partially informed consumers of future generations through the dynamic social learning.

When λ increases, there are fewer partially informed consumers to compete for, or the steady-

state demand becomes less sensitive to prices. As a result, competition is softened and prices

increase.

Example 1 (FOSD). Let λ = 1/4, {p′k} = {p′1 = p′2 = 1/2}, and {p′′k} = {p′′1 = p′′2 = p′′3 =

1/3}. Note that {p′′k} FOSD {p′k}. The values of
dψ
dx̂ |x̂=1/2 under {p′k} and {p′′k} are 7/4 and

9/5, respectively, leading to a lower equilibrium price under {p′′k}.

Example 2 (Mean-preserving spread). Let λ = 1/4, {pk}A = {p2 = 1}, and {pk}B = {p1 =

p2 = p3 = 1/3}, {pk}C = {p4 = 1}, and {pk}D = {p3 = p5 = 1/2}. Note that {pk}B is a

mean-preserving spread of {pk}A, and {pk}D is also a mean-preserving spread of {pk}C . The
values of dψdx̂ |x̂=1/2 under {pk}A and {pk}B are 5/2 and 9/5, respectively; thus the equilibrium

price is higher under {pk}B than under {pk}A. The values of dψdx̂ |x̂=1/2 under {pk}C and {pk}D
are 1.45 and 1.47, respectively; thus the equilibrium price is lower under {pk}D than under

{pk}C .

Next we consider the impact of network connectivity on social welfare. Denote the total

welfare and consumer surplus in the steady-state equilibrium as W and CS, respectively. In

particular,

W = V − 2{ t
4

[
1

2
− (1− λ)

∑
k

pk(
1

2
)k+1] +

3

4
t(1− λ)

∑
k

pk(
1

2
)k+1}

= V − t

4
− t(1− λ)

∑
k

pk(
1

2
)k+1. (8)

Total welfareW equals to V minus the total transportation costs incurred. The latter includes

the transportation costs incurred by the consumers who bought their right products, which is

captured by the first term in the braces in the first line; among these consumers the average

transportation costs per consumer is t/4. The second term in the braces is the total transporta-

tion costs incurred by the consumers who bought wrong products; among these consumers,

the average transportation costs per consumer is 3t/4. As to consumer surplus, CS = W −P e,
23Anderson and Renault (2000) found a similar result that equilibrium price increases in the fraction of

informed consumers, but in a different setup with a different definition of being informed. Their consumers
search for both prices and match values; informed consumers know their match values before they search prices.

18



which by (8) can be written as

CS = V − t

4
− t

1− (1− λ)
∑

k kpk(
1
2)k−1

1− (1− λ)
∑

k pk(
1
2)k−1

− t(1− λ)
∑
k

pk(
1

2
)k+1. (9)

Proposition 4 Total welfare W is increasing in network connectivity. However, consumer

surplus CS is not monotonic as the network connectivity increases. In particular, among the

k-friend networks, (i) CS is higher under the two-friend network than under the single-friend

network; (ii) when k ≥ 3, CS is decreasing in k; (iii) when k increases from 2 to 3, CS

decreases if the fraction of exogenously fully informed consumers λ ≤
√

113 − 10 ' 0.63, and

increases otherwise.

The result that total welfare always increases in network connectivity is easy to understand.

As the network becomes more connected, more consumers are fully informed and thus fewer

consumers buy wrong products, which reduces the total transportation costs and increases

total welfare. As to consumer surplus, besides the information effect mentioned above, there

is also a pricing effect as the equilibrium price changes with network connectivity. As the

pricing effect is not monotonic, the overall effect of network connectivity on consumer surplus

is not monotonic either. Among the k-friend networks, as k changes from 1 to 2, the price

decreases; thus the pricing effect and the information effect work in the same direction and

CS increases. With k ≥ 2, the price is increasing in k, which means that the pricing effect

and the information effect work in opposite directions. It turns out that when k ≥ 3 the

pricing effect always dominates so that CS is decreasing in k. Intuitively, when the network is

already relatively well connected, the fraction of consumers who buy wrong products is already

small. Thus a further increase in connectivity only leads to a small decrease in the number

of consumers buying wrong products, and hence the information effect is small. On the other

hand, a price increase induced by an increase in connectivity hurts all consumers. Therefore,

the pricing effect dominates when k is relatively large.

Comparing our predictions and those of Campbell (2019), although the result regarding

total welfare is the same, the predictions on consumer surplus are quite different, as the pricing

effects across two models are qualitatively different. In particular, Campbell (2019) predicts

that consumer surplus always increases in connectivity, whereas our model predicts that it

increases in connectivity when the network is sparsely connected, but decreases in connectivity

otherwise.

[Figure 1 is about here]
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To see the magnitude of the effect of network connectivity on the equilibrium price, social

welfare and consumer surplus, consider the following examples. We define networks {pk} with
pk−1 = pk = pk+1 = 1/3 as networks with three-point distributions, which is indexed by k.

With t = 1, λ = 1/4, and V = 2, Figure 1 illustrates how the equilibrium price and welfare

change with k among the k-friend networks and networks with three-point distributions. For

the k-friend networks, the price reduction and the increase in CS between the single-friend

network and the two-friend network are significant. When k is between 2 and 6, as k increases

the price increases considerably and CS decreases considerably. When k is bigger than 7, both

the price increase and CS reduction become relatively insignificant as k increases. This example

shows that, among not very well connected regular networks, an increase in connectivity could

have quantitatively significant impacts on both price and welfare. A similar pattern holds

under the networks with three-point distributions, though the changes in price and CS become

smaller (relative to the regular networks) as k increases. Overall, the two examples indicate

that the dynamic learning effect is quantitatively important under not very well connected

networks.

4 Homophily

A prevalent feature of social networks is homophily. That is, individuals tend to have friends

who are similar to themselves.24 In our context, homophily is reflected in the pattern that

consumers at similar locations in the product space are more likely to be friends. We use

parameter α ∈ [0, 1] to capture the degree of homophily. In particular, for each consumer at

location x, with probability 1− α a friend is drawn uniformly at random from location [0, 1],

and with probability α a friend is drawn from location [x− ε, x+ ε], with ε ≥ 0 but very small.

With this setup, a bigger α implies a higher degree of homophily. The purpose of this section

is to study the impact of homophily on pricing and welfare.

Steady-state equilibrium

With homophily, consumers become more likely to be aware of their preferred products, as their

friends are more likely to have bought their preferred products. In order to trace the evolution

of consumers’information status and purchasing behavior, we need to separate consumers into

two types (groups). For a given x̂, denote L type consumers as those with x ≤ x̂ (who buy

product 1 if fully informed), and R type consumers as those with x > x̂ (who buy product 2

if fully informed). Type L consumers and type R consumers differ in information received in

24See McPherson, Smith-Lovin and Cook (2001).
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the ex ante sense, as their friends’purchasing behaviors are different statistically. In order to

make the analysis tractable, we further assume that ε → 0. With ε → 0, the same process

governs all L type consumers’ information status and purchasing behaviors,25 and the same

holds among all R type consumers.

To proceed, we first introduce notations. Denote ψL,T (ψR,T ) as the the proportions of L

(R) type consumers of generation T who buy product 1, ψT = x̂ψL,T + (1 − x̂)ψR,T as the

market share of firm 1 in period T (which is also the probability that a random consumer of

generation T buys product 1), and φjh,T as the proportion of type h (h = L,R) consumers of

generation T who are informed of product j only. The transition equations (across generations)

are listed below.

φ1R,T+1 = (1− λ)
∑
k

pk[(1− α)ψT + αψR,T ]k,

φ2L,T+1 = (1− λ)
∑
k

pk[1− (1− α)ψT − αψL,T ]k,

ψL,T+1 = 1− φ2L,T+1, ψR,T+1 = φ1R,T+1.

In the first equation, (1 − α)ψT + αψR,T is the probability that a type R consumer’s (of

generation T + 1) friend (of generation T ) buys product 1, and this consumer is informed

of product 1 only if all his generation T friends bought product 1. Similarly, in the second

equation, 1 − (1 − α)ψT − αψL,T is the probability that a type L consumer’s (of generation
T + 1) friend (of generation T ) buys product 2, and this consumer is informed of product 2

only if all his generation T friends bought product 2. The above consumers in generation T +1

are informed of “wrong”products only, and thus will buy “wrong”products, as indicated by

the third and fourth equations.

Let ψL, ψR, and ψ be the steady-state market shares of firm 1. The steady-state conditions

require ψL,T+1 = ψL,T ≡ ψL and ψR,T+1 = ψR,T ≡ ψR. Using the above equations, we have

the following steady-state equations:

1− (1− λ)
∑
k

pk[1− (1− α)ψ − αψL]k = ψL, (10)

(1− λ)
∑
k

pk[(1− α)ψ + αψR]k = ψR, (11)

x̂ψL + (1− x̂)ψR = ψ. (12)

25 If ε > 0 and does not converge to 0, then the information received (ex ante) among the same type
consumers depends on their locations. A type L located very close to x̂ would receive information that is
statistically different from a type L located close to 0, as the former’s neighbors include some type R consumers.
This would make the analysis intractable.
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The above system consists of three equations with three unknowns, ψ, ψL and ψR. We can

solve these three endogenous variables as a function of x̂. Equations (10), (11), and (12) can

also be combined as

ψ = x̂+ (1− λ)
∑
k

pk{(1− x̂)[(1− α)ψ + αψR]k − x̂[1− (1− α)ψ − αψL]k}. (13)

As indicated by (13), ψ equals the full-information market share x̂ plus the fraction of con-

sumers “wrongly”bought product 1 minus the fraction of consumers “wrongly”bought product

2. When α = 0 (no homophily), (13) boils down to (3) in Section 3. The next three lemmas

present useful properties regarding the steady-state market shares for a fixed x̂.

Lemma 3 Fix the steady-state market share ψ ∈ [1/2, 1). The following results hold for ψL
(ψR), the fraction of type L (R) consumers who buy firm 1’s product. (i) There is a unique

ψL satisfying (10) and a unique ψR satisfying (11), with 0 < ψR < ψ < ψL < 1. (ii) Both ψL
and ψR are increasing in ψ; ψL is increasing and ψR is decreasing in the degree of homophily

α. (iii) ψR ≥ 1− ψL.

Observe that ψR is the probability that a type R consumer “wrongly”buy product 1, and

1 − ψL is the probability that a type L consumer “wrongly” buy product 2. As the degree
of homophily α increases, the probability that each type of consumers are informed of wrong

products only decreases, and thus both ψR and 1−ψL decrease (as shown in part (ii) of Lemma
3). The reason for ψR ≥ 1−ψL (as in part (iii)) is that the market share of firm 1, ψ, is weakly
larger than 1/2. Due to the component of random connection, it means that the probability

that a type L consumer is aware of product 1 is weakly higher than the probability that a

type R consumer is aware of product 2. As a result, compared to a type L consumer, a type

R consumer is more likely to buy the wrong product.

Lemma 4 Fix the full-information market share x̂ ∈ [1/2, 1). (i) There is a unique steady-

state market share ψ (and ψL and ψR as well), which satisfies ψ ∈ [x̂, 1). (ii) ψR < ψ < ψL

and ψ strictly increases in x̂.

By Lemma 4, a given full-information market share x̂ induces a unique steady-state market

share ψ. The next lemma shows how network connectivity and the degree of homophily affect

ψ.

Lemma 5 Fix the full-information market share x̂ ∈ [1/2, 1). (i) Under the single-friend

network or the infinite-friend network, or any other generic network but with the degree of

homophily α = 1, the steady-state market share ψ = x̂. (ii) Suppose x̂ ∈ (1/2, 1). Under any

generic network with α < 1, ψ > x̂ and ψ decreases in α.
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The most revealing result in Lemma 5 is that, under generic networks, firm 1’s steady-state

market share ψ decreases in the degree of homophily α. To understand the intuition, let us

consider two polar cases: random connection and extreme homophily (α = 1). Under random

connection, each consumer is more likely to be aware of product 1 than product 2 due to the

nature of random connection and the fact that x̂ > 1/2. Then there are more R type consumers

wrongly buying product 1 than L type consumers wrongly buying product 2, resulting in ψ

being bigger than x̂. However, in the case of extreme homophily, there is no consumers buying

wrong products, because every friend of a L (R) type consumer is of L (R) type, and thus

every consumer is aware of the right product in steady state. As a result, the steady-state

market share ψ = x̂. The general case (α ∈ (0, 1)) is just a combination of the above two

polar cases. As α increases, each type of consumers become more likely to be aware of their

preferred products, and thus there are fewer consumers buying wrong products. This means

that x̂ (> 1/2) translates into a smaller additional market share for firm 1 among partially

informed consumers, i.e., ψ decreases.

[Figure 2 is about here]

Figure 2 illustrates the relationship between α and the shape of the ψ(x̂) curve. In the

figure, λ = 1/4, p1 = p2 = p3 = 1/3 in network 1 and p2 = p3 = p4 = p5 = 1/4 in network 2.

Under both networks, the ψ(x̂) curve becomes more straight as α increases.

Next we endogenize x̂ and characterize steady-state equilibria. The pricing equations (first-

order conditions) have the same form as in the case of random connections:

P1 =
2tψ
dψ
dx̂

, P2 =
2t(1− ψ)

dψ
dx̂

,

x̂ =
1

2
+

∆

2t
− 2ψ − 1

dψ
dx̂

, (14)

where by (10), (11) and (12),

dψ

dx̂
=

ψL − ψR
1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]

=
1− (1− λ)[

∑
k pk(z

k
L + zkR)]

1− (1− λ)(1− α)[x̂
∑
k kpkz

k−1
L

1−(1−λ)α
∑
k kpkz

k−1
L

+ (1− x̂)
∑
k kpkz

k−1
R

1−(1−λ)α
∑
k kpkz

k−1
R

]
, (15)

where zL ≡ 1− (1−α)ψ−αψL and zR ≡ (1−α)ψ+αψR. By Lemma 4,
dψ
dx̂ is strictly positive.
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Equations (14) and (10)-(12) jointly determine the equilibrium pair of (x̂, ψ), which we denote

as (x̂e, ψe).

Proposition 5 There is a unique solution satisfying both the steady-state equations (10)-(12)
and the pricing equation (14), with the equilibrium full-information market share x̂e ∈ [1

2 ,
1
2 +

∆
2t ]. If the two firms are symmetric (∆ = 0), then both x̂e and the equilibrium steady-state

market share ψe are symmetric: x̂e = ψe = 1/2. The solution is the unique steady-state

equilibrium under either of the following conditions: (i) the network {pk} is the single-friend
network or a well-connected network; (ii) either the fraction of exogenously fully informed

consumers λ is relatively large, or the degree of homophily α is relatively high.

Similar to Proposition 1, conditions (i) and (ii) specified in Proposition 5 are suffi cient

conditions under which ψ(x̂) is convex when x̂ ≤ 1/2 and concave when x̂ ≥ 1/2,26 so that the

second-order conditions are satisfied globally. Intuitively, under either condition in the limit the

model converges to the Hotelling benchmark. Again, these two conditions are far from being

necessary. Even when λ is relatively small and α is relatively low so that the second-order

conditions are not satisfied globally, each firm’s profit function could still be single-peaked,

meaning that the solution satisfying the first-order conditions is indeed the equilibrium.27

The impact of homophily

In this subsection we focus on symmetric firms (∆ = 0). Proposition 5 shows that the unique

equilibrium is symmetric, with ψe = x̂e = 1/2, and P e1 = P e2 ≡ P e = t/(dψdx̂ |x̂=1/2). Moreover,

by (10) and (11), ψL = 1− ψR, and zL = zR. Then (15) can be simplified as:

dψ

dx̂
|x̂=1/2 =

(1− 2ψR){1− (1− λ)α
∑

k kpk[(1− α)/2 + αψR]k−1}
1− (1− λ)

∑
k kpk[(1− α)/2 + αψR]k−1

. (16)

The next proposition characterizes the impact of homophily on the equilibrium price.

Proposition 6 (i) If network {pk} is the single-friend network or the infinite-friend network,
then for any degree of homophily α, the equilibrium price P e = t, the transportation cost . (ii)

Under any other generic network, Pe < t (unless α = 1) and is monotonically increasing in α.

Proposition 6 shows that homophily softens competition and increases the equilibrium

price.28 This result differs significantly from the one in Campbell (2019), where the degree of
26See Lemma A2 in the Online Appendix.
27With ∆ = 0, in each of the four examples in Figure 2, each firm’s profit function is single-peaked in its own

price when the other firm’s price is fixed at its candidate equilibrium price.
28The impact of homophily is not restricted to market competition. See Galeotti and Mattozi (2011) on

politicians’choice of policy platforms, Golub and Jackson (2012) on the speed of social learning and Campbell
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homophily does not affect the equilibrium price. The underlying reason for the difference is

again the dynamic learning effect, which is absent in Campbell’s (2019) model. The intuition

for our result is already indicated in Lemma 5. As the degree of homophily α increases, each

type of consumers (L or R) is more likely to be informed of their preferred products, and

overall there are fewer consumers buying wrong products. This means that, if a firm cuts its

price and thus expands its full-information market share x̂ above 1/2, it can only induce fewer

partially informed consumers to wrongly buy its product. As a result, the dynamic learning

effect is dampened, and the steady-state market share becomes closer and less sensitive to the

full-information market share x̂, which softens competition and increases the price.

Next we examine the impact of homophily on welfare. Similar to earlier analysis, total wel-

fare W equals the gains from trade minus the total transportation costs incurred. Specifically,

W = V − 2[
t

4

1

2
ψL +

3t

4

1

2
ψR] = V − t

4
− t

2
ψR. (17)

The second equality follows from the fact that ψL = 1 − ψR. In the expression of (17), t/4
is the total transportation costs if all consumers buy right products, ψR is the fraction of

consumers who buy “wrong” products, and on average each of these consumers suffers an

additional transportation costs of t/2. Similarly, consumer surplus CS can be written as

CS = W − P e = V − t

4
− t

2
ψR − t/(

dψ

dx̂
|x̂=1/2). (18)

Proposition 7 (i) Total welfare W is increasing in the degree of homophily α. (ii) Under

the single-friend network or the infinite-friend network, consumer surplus CS is increasing in

α. (iii) Under any other generic network {pk}, if the probability of having a single friend p1

is less than that of having exactly two friends p2, then CS is decreasing in α for α ≤ 1/2; if

p1 = 0, then CS is decreasing in α for α ≤ 3/4.

The result that homophily improves total welfare is intuitive. As the degree of homophily

increases, consumers are more likely to be informed of their preferred products and thus fewer

consumers buy wrong products, which decreases the total transportation costs and increases

total welfare. As to consumer surplus, besides the information effect mentioned above, which

always benefits consumers, there is a pricing effect which works in the opposite direction. In

particular, homophily increases the price and thus hurts consumers. Part (iii) of Proposition 7

shows that the overall effect of homophily on consumer welfare is negative if α is not too large.

The pricing effect tends to dominate, because an increase in α only prevents an additional

et al. (2019) on political polarization in the social media network.

25



fraction of consumers from buying wrong products, but the resulting increase in price hurts

all consumers. Notice that this result is qualitatively different from Campbell (2019), in which

homophily always improves consumer welfare. This is because the pricing effect of homophily

is absent in his model.

[Figure 3 is about here]

In fact, numerical examples suggest that the overall effect of homophily on consumer welfare

could be negative for the entire domain of α. Using the same networks as before with t = 1

and λ = 1/4, Figure 3 plots how the equilibrium price, total welfare, and consumer surplus

change as α varies. Under both networks, consumer surplus is monotonically decreasing in α

for any α.

5 Asymmetric Firms

In this section we consider asymmetric firms; that is, 0 < ∆ ≤ t. Due to asymmetry, in

equilibrium firms will charge different prices and have different market shares. We first consider

the case with random connections, and then consider the case with homophily.

Random connections

With random connections, we are mainly interested in how network connectivity affects firms’

asymmetry in equilibrium.

Proposition 8 (i) The single-friend network and the infinite-friend network lead to the same
equilibrium prices and market shares, which coincide with those in the standard Hotelling model.

(ii) Under generic networks, compared to the Hotelling benchmark, competition is more intense

and the equilibrium market share of firm 1 (2) is higher (lower), and firm 2’s equilibrium price

is lower. (iii) Under the k-friend networks with k ≥ 2 and firm 1’s advantage ∆ not being too

large, firm 1’s equilibrium market share ψe decreases in k.

Part (ii) of Proposition 8 shows that, relative to the Hotelling benchmark, with learning

from friends generically firm 1’s advantage and firm 2’s disadvantage are amplified. The un-

derlying reason is again the dynamic learning across generations. With asymmetric firms, the

full-information market share of firm 1 is strictly bigger than 1/2. Through learning from

friends, firm 1 can gain additional market share among partially informed consumers. To
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counter the reduced market share, firm 2 reduces its price. The result also indicates that the

market shares and prices are not monotonic in network connectivity: the two extreme networks

with the lowest and highest connectivity have the same market shares and prices, whereas for

all other networks the market share ψe is higher and firm 2’s price is lower. Part (iii) implies

that, among the k-friend networks with k ≥ 2 and when two firms are not too asymmetric,

an increase in connectivity dampens the advantage of firm 1. The reason behind this result

is part (iii) of Lemma 2. In particular, when k ≥ 2, a further increase in k reduces firm 1’s

market share ψ for any given x̂. This effect tends to reduce ψe as k increases.

The Online Appendix provides concrete examples under the k-friend networks, with the

qualitative relationship between prices and k the same as in the case with symmetric firms.

Broadly speaking, the general pattern is that if the initial network is already relatively well

connected, then a further increase in connectivity would decrease firm 1’s market share and

soften competition, as the dynamic learning effect is dampened.

Homophily

With homophily, we focus on how the degree of homophily affects the asymmetry between

firms in equilibrium.

Proposition 9 Consider generic networks, and suppose that firm 1’s advantage ∆ is not too

large. The equilibrium market share of firm 1, ψe, is decreasing in the degree of homophily α.

Moreover, if α < 1, then, relative to the Hotelling benchmark, in equilibrium ψe is higher and

firm 2’s price is lower.

Proposition 9 shows that homophily dampens the advantage of firm 1 and the disadvantage

of firm 2. The underlying intuition for this result is the same as that of part (ii) of Lemma

5: homophily dampens the dynamic learning effect. That is, as α increases, there are fewer

consumers buying wrong products, which means that the same x̂ > 1/2 would translate into

a smaller additional market share among partially informed consumers for firm 1. The Online

Appendix provides concrete examples when ∆ is large, in which the result in Proposition 9

holds globally. Overall, the conclusion is that an increase in the degree of homophily α softens

competition and dampens firm 1’s advantage.

6 Robustness

In the baseline model we have assumed that firms’ objectives are maximizing steady-state

profits and their prices, once set, are fixed in all periods; the former effectively assumes that
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δ = 1, where δ is firms’discount factor. In this section we will relax these two assumptions,

and examine how our main results will change. For simplicity, we restrict attention to the case

of symmetric firms with random connections.

Impatient firms

In this subsection we consider a general δ ∈ [0, 1], and each firm’s objective is to maximize its

discounted sum of profits by setting its price. To set the model rolling, we need to introduce

generation 0 consumers (old generation in period 1). As firms are symmetric and we focus

on symmetric equilibrium, we assume that 1/2 of generation 0 consumers bought from firm 1

(consistent with the steady-state market share). Then under any symmetric price the market

share ψT will converge to the steady-state market share in period 1, which is 1/2. All the other

assumptions are the same as in the baseline model. Note that our baseline model corresponds to

the case that δ = 1 (firms care only about long-run steady profits), and the model of Campbell

(2019) corresponds to the case that δ = 0 (firms care only about the profits in period 1).

Denote the symmetric equilibrium price as P ∗. Sometimes we write the market shares

explicitly as ψT (P1, P2) and x̂(P1, P2), and denote ψ∗T = ψT (P ∗, P ∗) and x̂∗ = x̂(P ∗, P ∗).

Note that on the equilibrium path, x̂∗ = ψ∗T = 1
2 for any T . Due to symmetry, we only need

to consider firm 1’s incentive. Specifically, firm 1 tries to maximize
∑∞

T=1 δ
T−1P1ψT (P1, P

∗)

by choosing P1, subject to the evolution of ψT (derived earlier in Section 3):

ψT+1 = x̂+ (1− λ)
∑
k

pk[(1− x̂)ψkT − x̂(1− ψT )k],

where more explicitly x̂ = x̂(P1, P
∗) and ψT = ψT (P1, P

∗). In the symmetric equilibrium, the

first-order condition for P1 yields

∞∑
T=1

δT−1[
1

2
+ P ∗

∂ψ∗T
∂P1

] = 0,

where
∂ψ∗T
∂P1

= − 1

2t
[1− (1− λ)

∑
k

pk(
1

2
)k−1]

T∑
j=1

(
(1− λ)

∑
k

pkk(
1

2
)k−1

)j−1

.

We can verify that the absolute value of ∂ψ
∗
T

∂P1
strictly increases in T , and that

lim
T→∞

∂ψ∗T
∂P1

= − 1

2t

1− (1− λ)
∑

k pk(
1
2)k−1

1− (1− λ)
∑

k pkk(1
2)k−1

=
∂ψ

∂P1
,
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where ψ is the steady-state market share. From the above equations, we get

P ∗ = t
1− δ(1− λ)

∑
k pkk(1

2)k−1

1− (1− λ)
∑

k pk(
1
2)k−1

. (19)

When δ = 1, P ∗ in (19) coincides with the equilibrium price in our baseline model, and it

coincides with the equilibrium price in Campbell (2019) when δ = 0.

Proposition 10 Consider symmetric firms with random connections and suppose the discount
factor δ ∈ [0, 1]. (i) The equilibrium price P ∗ decreases in firms’patience level δ. (ii) Among

the k-friend networks, there exists a cutoff integer k̂ ≥ 2 such that P ∗ decreases in k when

k ≤ k̂ and increases in k when k > k̂. The cutoff k̂ decreases in δ: it equals 2 when δ = 1 and

approaches ∞ when δ → 0.

Part (i) of Proposition 10 shows that the model with a general δ nests Campbell (2019) and

our baseline model as two extreme cases, with δ = 0 and δ = 1, respectively.29 In particular,

the equilibrium price continuously decreases as firms become more patient, and those in the

two extreme cases are the lower and upper bounds. The underlying reason for this result is

that the market shares (and hence profits) in later periods are more sensitive to prices (∂ψ
∗
T

∂P1

is increasing in T ).30 When firms become less patient, they put less weights on profits in later

periods, which causes the equilibrium price to increase.

Part (ii) shows that, with a general δ, the non-monotonicity result regarding the effect of

network connectivity on the equilibrium price (exhibits a U-shape) still holds as long as δ > 0.

Moreover, δ affects the size of the decreasing region (the relationship is negative) and that

of the increasing region. When δ decreases, the decreasing region expands and the increasing

region shrinks. When δ goes to 0, the increasing region disappears completely, which coincides

with the result in Campbell (2019).

A general δ also affects Proposition 3. In particular, if δ is larger than some cutoff δ̂ ∈ (0, 1),

then a FOSD change in network connectivity specified in part (i) still leads to an increase in the

equilibrium price; but the result is reversed when δ < δ̂. Similarly, in part (ii), the equilibrium

price is increasing in λ (the fraction of exogenously fully informed consumers) if δ is large,

and the result is reversed when δ is small. Regarding the welfare results in Proposition 4,

with a general δ they are modified accordingly, as consumer surplus (CS) is mainly driven by

the equilibrium price. Specifically, the relationship between network connectivity and CS still

29By (19), under the single-friend network P ∗ ≥ t, and under the infinite-friend network P ∗ = t.
30 If P1 is a little bit lower than P ∗, because the market share in period 0 is 1/2, the market share ψT will

increase monotonically until it reaches the steady-state level, which is higher than 1/2.
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exhibits an inverse U-shape if δ is not too small. Moreover, as δ decreases, the decreasing

region gradually shrinks.31

Two-period model with changing prices

In this subsection, we allow firms to change prices across periods. For tractability, we focus on

the case that there are only two periods. Again, we assume that 1/2 of generation 0 consumers

bought from firm 1 (ψ0 = 1/2). Each firm tries to maximize its discounted profits with discount

factor δ. All the other assumptions are the same as in the baseline model. Again, we will focus

on the symmetric equilibrium.

Denote Pi,T as the price of firm i , x̂T as the full-information market share, and P ∗T as the

symmetric equilibrium price, in period T , T = 1, 2. In particular,

x̂T =
1

2
+
P2,T − P1,T

2t
, and

dx̂T
dP1,T

=
d(1− x̂T )

dP2,T
= − 1

2t
.

Similar to the baseline model, the market share ψT evolves according to

ψT = x̂TφF,T +(1−λ)
∑
k

pkψ
k
T−1, where φF,T = 1− (1−λ)

∑
k

pk[ψ
k
T−1 +(1−ψT−1)k]. (20)

Here φF,T is the fraction of fully informed consumers, and (1 − λ)
∑

k pkψ
k
T−1 is the fraction

of consumers informed of firm 1’s product only, in period T . In the Appendix, we derive the

equilibrium prices as follows:

P ∗2 =
t

1− (1− λ)
∑

k pk(
1
2)k−1

; P ∗1 = t
1− 2

3δ(1− λ)
∑

k pkk(1
2)k−1

1− (1− λ)
∑

k pk(
1
2)k−1

. (21)

Proposition 11 Consider the two-period model with symmetric firms, random connections,

discount factor δ > 0, and changing prices. (i) The symmetric equilibrium prices in period

T , P ∗T (T = 1, 2), are given by (21), with P ∗1 < P ∗2 . (ii) Among the k-friend networks, the

first-period price P ∗1 is non-monotonic in k: it decreases in k when k is small and increases in

k when k is large. The cutoff integer k̃ is larger than k̂, the cutoff in Proposition 10.

The result that P ∗1 < P ∗2 is intuitive. As period 2 is the last period, firms compete only

for the fully informed consumers in that period.32 On the other hand, in the first period

31The proofs of the above results are available upon request.
32Actually, P ∗2 is the same as the equilibrium price in Campbell (2019).
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firms compete not only for the fully informed consumers in period 1, but also for the partially

informed consumers in period 2, as the market share in period 1 affects the fraction of partially

informed consumers in period 2 through the dynamic learning channel. As a result, competition

is more intense and the price is lower in period 1.

Part (ii) of Proposition 11 shows that the non-monotonicity result in our baseline model

is robust when we allow prices to change across periods: P ∗1 is non-monotonic in network

connectivity. The underlying reason is the presence of the dynamic learning effect in period 1,

as explained earlier. For the same δ, P ∗1 is higher than P
∗ in the previous subsection because

in the current setting there are only two periods, whereas in the previous setting the horizon

is infinite. Based on the results in the two-period model, in a model with a longer horizon (say

T periods) and changing prices we conjecture that the following results will hold. First, the

symmetric equilibrium prices increase over time (P ∗T increases in T ), as in later periods the

dynamic leaning effect becomes weaker because there are fewer future periods left. Second, for

any price P ∗T except for the last period T , it is non-monotonic in network connectivity. This

is because the dynamic learning effect is present in every period except for the last period T .

7 Conclusion and Discussion

We study a dynamic model of price competition with differentiated products and word-of-

mouth learning: each generation of consumers learns about available products from their

friends of the previous generation. The social network, which links consumers across genera-

tions, affects the evolution of consumers’awareness of products and firms’long-term market

shares. Focusing on steady-state equilibria, we examine how the structure of the social network

influences market shares, prices, and welfare. Due to the dynamic learning process, firms’cur-

rent market shares have long-run consequences on their future demand. As a result, firms also

compete for partially informed consumers in future periods, and competition is more intense

compared to the Hotelling benchmark. By incorporating this dynamic learning process, our

article provides an alternative explanation as to why firms seemingly overemphasize on market

shares, and sheds light on for which industries/products this overemphasis is more relevant.

In the basic model with random connections, we find that the intensity of competition is

non-monotonic in network connectivity. In particular, under relatively well connected networks,

a further increase in network connectivity softens competition. As a result, although total

welfare is increasing in network connectivity, consumer surplus is non-monotonic because the

impact of network connectivity on equilibrium price is not monotonic. In the model with

homophily, we find that homophily softens competition, and that consumer welfare is non-

monotonic in the degree of homophily. With asymmetric firms, the advantage of the advantaged

31



firm is amplified by the dynamic learning process, but it is dampened by homophily. As a

robustness check, we also study two extensions: the first one considers the case of impatient

firms, and in the second one we allow firms to change prices across periods in a two-period

model. Our main results still hold qualitatively in both settings.

The assumption of fixed prices across periods makes our baseline model tractable. Although

the two-period model with changing prices illustrates the robustness of our main results in the

baseline model, we are not certain about whether our results will change in an infinite horizon

model with flexible prices. It is highly desirable to fully work out such a model,33 and we

leave it for future research.34 Another assumption of our model is that the friends of each

new generation of consumers are of the previous generation only. At the expense of technical

complications, we can extend the model to settings in which the friends of each new generation

are from previous generations. For instance, generation T consumers could be friends with the

T − 1 and T − 2 generations. However, extending our model to these settings will not quali-

tatively change our results, because firms are still competing for partially informed consumers

in future periods due to the dynamic learning process. In these new settings, compared to our

basic model, the steady state will be reached more slowly, because market shares in earlier

periods will have more persistent impact on the demand in later periods. As a result, we

conjecture that the steady-state demand will be more sensitive to the full-information market

share and prices, which leads to more intense competition.

33We conjecture that, in such a setting with symmetric firms, the price in symmetric Markov equilibrium will
be stationary across periods.
34Our model assumed that a consumer is only informed of the product purchased by her friend. Alternatively,

a consumer could become informed of all the products that her friend is aware of. Consequently, consumers’
information improves over time, and all consumers will be fully informed in the long-run, implying that the
steady-state equilibrium will be the same as the standard Hotelling benchmark.
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Appendix

Proof of Lemma 1.
Proof. We first show that, given x̂, there is a steady-state ψ, at which the H(ψ) curve crosses

the 45-degree line. By (3), it is clear that H(ψ) is continuous in ψ. Moreover,

lim
ψ→0

H(ψ) = λx̂ > 0, lim
ψ→1

H(ψ) = 1− λ(1− x̂) < 1.

Therefore, there exists a ψ ∈ (0, 1) satisfying ψ = H(ψ).

For the uniqueness of ψ, it suffi ces to show that ∂3H
∂ψ3
≥ 0 for all ψ within (0, 1), which

implies that H(ψ) crosses the 45-degree line at most once within domain (0, 1). By (3),

∂3H

∂ψ3 ∝
∑
k≥3

pkk(k − 1)(k − 2)[(1− x̂)ψk−3 + x̂(1− ψ)k−3] ≥ 0.

Thus ψ is unique.

Next, based on (3),

H(x̂) = x̂+ (1− λ)x̂(1− x̂)
∑
k

pk[x̂
k−1 − (1− x̂)k−1] ≥ x̂.

The inequality follows from the fact that x̂k−1−(1− x̂)k−1 ≥ 0 when x̂ ≥ 1/2. Combining with

the earlier result that limψ→1H(ψ) < 1, we conclude that the unique ψ must be within [x̂, 1).

Moreover, H(x̂) ≥ x̂ means that the H(ψ) curve crosses the 45-degree line from above. This

property further implies that the steady-state ψ is globally stable, as ψT+1 = H(ψT ) > ψT

when ψT < ψ and ψT+1 = H(ψT ) < ψT for ψT > ψ.

Finally, to show the monotonicity of ψ in x̂, let x̂2 > x̂1 ≥ 1/2, and ψj be the corresponding

steady-state ψ with x̂j . That is, ψj = H(x̂j , ψj). By (3), we have

∂H

∂x̂
= 1− (1− λ)

∑
k

pk[(ψ)k + (1− ψ)k] > 0,

as the term of summation is less than 1. This implies that H(x̂2, ψ1) > H(x̂1, ψ1) = ψ1. Now

consider the case with x̂2. The fact that H(x̂2, ψ1) > ψ1 implies that at ψ1 the H(ψ) curve

lies above the 45-degree line. Because the H(ψ) curve crosses the 45-degree line from above,

we must have ψ2 > ψ1.

Proof of Lemma 2.
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Proof. Based on (3),

H(x̂) = x̂+ (1− λ)x̂(1− x̂)
∑
k

pk[x̂
k−1 − (1− x̂)k−1]. (22)

Part (i). Under the single-friend network, (22) becomes H(x̂) = x̂ with p1 = 1, and thus

ψ = x̂. Under the infinite-friend network, when k →∞, both
∑

k pkx̂
k−1 and

∑
k pk(1− x̂)k−1

go to 0. Therefore, again H(x̂) = x̂ and ψ = x̂.

Part (ii). Consider any generic network. In (22),
∑

k pk[x̂
k−1 − (1 − x̂)k−1] > 0 when

x̂ > 1/2 and pk > 0 for some finite k ≥ 2, which implies that H(x̂) > x̂. It means that ψ > x̂,

because ψ is unique given x̂ and the H(ψ) curve crosses the 45-degree line from above.

Part (iii). Under the k-friend network, the steady-state equation (3) is written as

ψ = x̂+ (1− λ)[(1− x̂)(ψ)k − x̂(1− ψ)k] ≡ H(ψ, k). (23)

Fixing x̂, denote ψk as the solution to (23). For k ≥ 2, to show that ψk+1 < ψk, it is suffi cient

that H(ψk, k + 1) < ψk; that is, under the (k + 1)-friend network, H(ψk) lies below the 45-

degree line (recall that at ψk+1, the H(ψ, k + 1) curve crosses the 45 degree line from above

by Lemma 1).

H(ψk, k + 1) = x̂+ (1− λ)[(1− x̂)(ψk)
k+1 − x̂(1− ψk)k+1]

= x̂+ (1− λ)[(1− x̂)(ψk)
k − x̂(1− ψk)k]

−(1− λ)ψk(1− ψk)[(1− x̂)(ψk)
k−1 − x̂(1− ψk)k−1]

< x̂+ (1− λ)[(1− x̂)(ψk)
k − x̂(1− ψk)k] = H(ψk, k) = ψk.

The inequality holds for k ≥ 2 because (1− x̂)(ψk)
k−1 − x̂(1− ψk)k−1 > 0 with ψk > x̂ > 1/2

based on part (ii).

Proof of Proposition 1.
Proof. We first show that a solution exists. With x̂ being the horizontal axis and ψ the

vertical axis, the steady-state equation (3) defines a SS-curve and the pricing equation (6)

defines a PE-curve. A solution is an intersection of these two curves. It is obvious that both

curves are continuous. By (3), when x̂ = 1/2, we have ψ = 1/2. Thus (1
2 ,

1
2) is the starting

point of the SS-curve. By (6), when x̂ = 1/2, we have ψ ≥ 1/2, because dψ
dx̂ > 0 by Lemma

1. Therefore, the starting point of the PE-curve is weakly above that of the SS-curve. Next

consider x̂ = 1
2 + ∆

2t . By Lemma 2 on the SS-curve we have ψ(x̂ = 1
2 + ∆

2t) ≥ x̂ = 1
2 + ∆

2t . By
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(6), ψ(x̂ = 1
2 + ∆

2t) = 1/2 on the PE-curve, because dψ
dx̂ > 0. Therefore, at x̂ = 1

2 + ∆
2t , the

PE-curve is weakly below the SS-curve. By continuity, the two curves must intersect at some

x̂ ∈ [1
2 ,

1
2 + ∆

2t ], which is a solution. Because x̂e ∈ [1
2 ,

1
2 + ∆

2t ], in the solution we must have

x̂e = 1/2 when ∆ = 0, which implies that ψe = 1/2 as well.

Next we show the uniqueness of the solution. The pricing equation (6) can be more com-

pactly written as

x̂ =
1

2
+

∆

2t
− (2ψ − 1)

dx̂

dψ
. (24)

The derivative of the RHS of (24) with respect to ψ equals to

−[(2ψ − 1)
d2x̂

dψ2 + 2
dx̂

dψ
],

which is strictly negative. To see this, by Lemma A1 in the Online Appendix, d
2x̂
dψ2
≤ 0 when

ψ ≤ 1/2, and d2x̂
dψ2
≥ 0 when ψ ≥ 1/2. Therefore, (2ψ − 1) ∂

2x̂
∂ψ2
≥ 0 for any ψ ∈ [0, 1]. Together

with the fact that dx̂
dψ > 0, we have the desired result. In addition, the partial derivative of the

RHS of (6) with respect to x̂ is negative. This means that the PE-curve is downward sloping.

Note that the SS-curve is upward sloping because dψ
dx̂ > 0. Thus, the two curves can have only

one intersection; that is, the solution is unique.

Finally, we show the suffi ciency of the first-order conditions by checking the second-order

conditions. We will only prove the result for firm 1, as firm 2’s situation is similar. In particular,

∂2π1

∂P 2
1

∝ −2
dψ

dx̂
+
P1

2t

d2ψ

dx̂2
.

Because dψ
dx̂ > 0, and by Lemma A1 in the Online Appendix, d

2ψ
dx̂2
≤ 0 when ψ ≥ 1/2, we have

∂2π1
∂P 21

< 0 when ψ ≥ 1/2. When ψ ≤ 1/2 (P1 is relatively large), because
d2ψ
dx̂2
≥ 0 by Lemma

A1 in the Online Appendix, the sign of ∂
2π1
∂P 21

is indeterminate. To ensure ∂2π1
∂P 21
≤ 0, |d

2ψ
dx̂2
| has

to be small enough. By Lemma A1 in the Online Appendix, limλ→1
d2ψ
dx̂2

= 0 and d2ψ
dx̂2
→ 0

under either well-connected networks or the single-friend network. Therefore, the second-order

condition ∂2π1
∂P 21
≤ 0 is satisfied if either λ is large enough or the network is either well-connected

or the single-friend network.

Proof of Proposition 2.
Proof. Part (i). By (7), dψdx̂ = 1 under both the single-friend network and the infinite-friend

network. Then P e = t immediately follows. Now consider any generic network, with pl > 0
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for some finite l ≥ 2. Under these networks, it is obvious that

∑
k

kpk(
1

2
)k−1 >

∑
k

pk(
1

2
)k−1.

By (7), this implies that dψ
dx̂ |x̂=1/2 > 1. Therefore, P e < t.

Part (ii). Under the k-friend networks, by (7) we have

[
dψ

dx̂
(k + 1)− dψ

dx̂
(k)]|x̂=1/2 ∝ (2− k)(

1

2
)k − (1− λ)(

1

2
)2k−1,

which is positive if k = 1, but is negative for any k ≥ 2. The statement in the proposition

immediately follows.

Proof of Proposition 3.
Proof. Part (i). It is suffi cient to show that [dψdx̂ (p′k) −

dψ
dx̂ (p′′k)]|x̂=1/2 > 0. By (7), [dψdx̂ (p′k) −

dψ
dx̂ (p′′k)]|x̂=1/2 has the same sign as

∑
k

(k− 1)(p′k − p′′k)(
1

2
)k−1 + (1− λ)[

∑
k

p′k(
1

2
)k−1

∑
k

kp
′′
k(

1

2
)k−1−

∑
k

p′′k(
1

2
)k−1

∑
k

kp
′
k(

1

2
)k−1].

Because (1
2)k−1 is decreasing in k and {p′′k} FOSD {p′k}, A ≡

∑
k p
′′
k(

1
2)k−1 <

∑
k p
′
k(

1
2)k−1 ≡ B.

The term (k − 1)(1
2)k−1 is constant when k changes from 2 to 3, and decreases in k for k ≥ 3.

Because {p′′k} FOSD {p′k} and p′′1 = p′1, relative to {p′k}, {p′′k} puts higher probabilities on
k ≥ 3. Therefore, Z ≡

∑
k(k − 1)(p′k − p′′k)(

1
2)k−1 > 0. Similarly, C ≡

∑
k kp

′′
k(1

2)k−1 <∑
k kp

′
k(

1
2)k−1 ≡ D, because the term k(1

2)k−1 is constant when k changes from 1 to 2, and is

decreasing in k for k ≥ 2. Note that A, B, C, and D are all smaller than 1. Moreover,

(A+D)− (B + C) =
∑
k

(k − 1)(p′k − p′′k)(
1

2
)k−1 = Z > 0.

Using more compact notations, we have

[
dψ

dx̂
(p′k)−

dψ

dx̂
(p′′k)]|x̂=1/2 ∝ Z + (1− λ)(BC −AD).

If BC ≥ AD, then we get the desired result that [dψdx̂ (p′k) −
dψ
dx̂ (p′′k)]|x̂=1/2 > 0. Next consider
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the case that BC < AD. In particular,

Z + (1− λ)(BC −AD) > Z +BC −AD > B(C + Z)−AD > 0.

The first inequality holds because BC < AD. The second inequality uses the fact that B < 1.

The last inequality holds because B + C + Z = A + D, A < B < D, and A < C + Z < D.

Therefore, again [dψdx̂ (p′k)−
dψ
dx̂ (p′′k)]|x̂=1/2 > 0.

Part (ii). By (7),
∂(dψdx̂ |x̂=1/2)

∂λ
∝
∑
k

(1− k)pk(
1

2
)k−1,

which is negative if there is a finite k ≥ 2 such that pk > 0. Therefore, the equilibrium price

increases in λ.

Proof of Proposition 4.
Proof. Because (1

2)k+1 is decreasing k, a FOSD change in {pk} reduces
∑

k pk(
1
2)k+1. By (8),

this implies that W increases.

Next consider consumer surplus CS. For the k-friend networks, we can compute the dif-

ference in CS as k increases by 1 based on equation (9):

CS(k)− CS(k + 1) ∝ (
1

2
)k+2[(4k − 9) + 11(1− λ)(

1

2
)k − (1− λ)2(

1

2
)2k−1]. (25)

It can be verified that (25) is negative when k = 1. Therefore, CS(k = 2) > CS(k = 1). This

proves part (i). For part (ii), it can be verified that (25) is positive when k ≥ 3. Therefore,

CS is decreasing in k when k ≥ 3. Finally, for part (iii), when k = 2 the term in the bracket

in (25) becomes

−1 +
11

4
(1− λ)− (1− λ)2

8
,

which is positive if λ ≤
√

113 − 10 ' 0.63 and negative otherwise. The result immediately

follows.

Proof of Lemma 3.
Proof. Parts (i) and (ii). The proof is similar to that of Lemma 1. Define the LHS of

(10) and (11) as HL(ψL) and HR(ψR), respectively. Note that both HL(·) and HR(·) are
continuous functions. Given ψ, the steady-state ψL satisfies ψL = HL(ψL) and ψR satisfies

ψR = HR(ψR). We first show that for any given ψ, there is a unique ψL ∈ (ψ, 1). It can be

verified that HL(ψ) = 1 − (1 − λ)
∑

k pk(1 − ψ)k ≥ 1 − (1 − λ)(1 − ψ) > ψ, and HL(1) =
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1 − (1 − λ)
∑

k pk[(1 − α)(1 − ψ)]k < 1. Thus the continuity of HL(·) implies the existence
of a ψL ∈ (ψ, 1) which satisfies ψL = HL(ψL). To show the uniqueness, it is suffi cient that
∂3HL
∂ψ3

> 0, which implies that the HL-curve crosses the 45 degree line at most once. It is

straightforward to check that ∂3HL
∂ψ3

> 0 holds, thus we have the uniqueness of ψL.

Next we show that ψL is increasing in ψ. Notice that HL(ψ) > ψ also implies that the

HL-curve crosses the 45 degree line from above. As ψ increases, the HL-curve shifts up, which

means that ψL increases, or
∂ψL
∂ψ > 0. To show that ψL is increasing in α, consider α

′′ > α′,

and denote the corresponding steady-state ψL as ψ
′
L and ψ

′′
L, respectively. Because ψ

′
L > ψ

and α′′ > α′, by (10) we have ψ′L = HL(ψ′L, α
′) < HL(ψ′L, α

′′). Given that the HL-curve

crosses the 45 degree line from above, ψ′′L > ψ′L must hold.

Following similar steps, we can show the results regarding ψR. First, HR(0) > 0 and

HR(ψ) = (1 − λ)
∑

k pkψ
k < ψ. Second, ∂

3HR
∂ψ3

> 0. These properties ensure a unique ψR ∈
(0, ψ) satisfying ψR = HR(ψR), and that the HR-curve crosses the 45 degree line from above.

As ψ increases, the HR-curve shifts up, which means that ψR increases, or
∂ψR
∂ψ > 0. Finally,

consider α′′ > α′. As ψ′R < ψ, by (11) α′′ > α′ implies that ψ′R = HR(ψ′R, α
′) > HR(ψ′R, α

′′).

Given that the HR-curve crosses the 45 degree line from above, ψ′′R < ψ′R must hold.

Part (iii). Denote φL ≡ 1− ψL. By (10) and (11), we have

φL = (1− λ)
∑
k

pk[φL + (1− α)(1− ψ − φL)]k, (26)

ψR = (1− λ)
∑
k

pk[ψR + (1− α)(ψ − ψR)]k. (27)

Define the RHS of (26) as GL(φL), and thus GL(φL) = φL. Recall that the RHS of (27) is

HR(ψR). As ψ ≥ 1/2, comparing (26) and (27), we have HR(y) ≥ GL(y) for any y ≤ ψ.

Therefore, φL = GL(φL) ≤ HR(φL). The fact that φL ≤ HR(φL) implies that ψR ≥ φL =

1− ψL, as the HR-curve crosses the 45 degree line from above.

Proof of Lemma 4.
Proof. Part (i). Denote ψL(ψ) and ψR(ψ) as the functions of the steady-state ψL and

ψR when ψ changes. Then H(ψL(ψ), ψR(ψ)) ≡ x̂ψL(ψ) + (1 − x̂)ψR(ψ), and the steady-

state ψ satisfies ψ = H(ψL(ψ), ψR(ψ)). For the existence of a steady state, it suffi ces to

show that (a) H(ψL(ψ), ψR(ψ)) is continuous, (b) limψ→0H(ψL(ψ), ψR(ψ)) ≥ 0, and (c)

limψ→1H(ψL(ψ), ψR(ψ)) ≤ 1. Note that (a) holds because both ψL(ψ) and ψR(ψ) are contin-

uous, and both (b) and (c) are satisfied because, by (10) and (11), ψL ∈ [0, 1] and ψR ∈ [0, 1].

Therefore, the existence of a steady-state ψ is ensured. For the uniqueness of ψ, it is enough

to show that (d) d3

dψ3
H(ψL(ψ), ψR(ψ)) ≥ 0, which implies that H(ψL(ψ), ψR(ψ)) crosses the
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45-degree line at most once. Actually, combined with (b) and (c), property (d) also implies

that the H(ψ) curve crosses the 45-degree line from above at the steady-state ψ.

To show property (d), it is enough to show that ∂3ψL
∂ψ3

≥ 0 and ∂3ψR
∂ψ3

≥ 0, because
d3

dψ3
H(ψL(ψ), ψR(ψ)) = x̂∂

3ψL
∂ψ3

+ (1 − x̂)∂
3ψR
∂ψ3

. For that purpose, define f(z) ≡
∑

k pkz
k,

zL ≡ 1− (1−α)ψ−αψL, and zR ≡ (1−α)ψ+αψR. It can be readily verified that
∂n

∂zn f(z) ≥ 0

for all n. Moreover, ∂zL∂ψ = −(1 − α + α∂ψL∂ψ ) and ∂zR
∂ψ = (1 − α + α∂ψR∂ψ ). Differentiating (10)

with respect to ψ yields
∂ψL
∂ψ

=
(1− λ)(1− α)f ′(zL)

1− (1− λ)αf ′(zL)
.

The numerator of the above expression is positive. By Lemma 3, ∂ψL∂ψ > 0. Thus the denomina-

tor, 1−(1−λ)αf ′(zL), is also positive. That ∂ψL∂ψ > 0 also implies that ∂zL∂ψ < 0. Differentiating

(10) repeatedly, we get

∂2ψL
∂ψ2 =

−(1− λ)f ′′(zL)(∂zL∂ψ )2

1− (1− λ)αf ′(zL)
,

∂3ψL
∂ψ3 =

(1− λ)[−f ′′′(zL)(∂zL∂ψ )3 + 3αf ′′(zL)∂zL∂ψ
∂2ψL
∂ψ2

]

1− (1− λ)αf ′(zL)
.

Note that ∂2ψL
∂ψ2

< 0, as the numerator is negative. On the other hand, ∂
3ψL
∂ψ3

> 0, because the

numerator is positive as ∂zL
∂ψ < 0 and ∂2ψL

∂ψ2
< 0.

Similarly, regarding ψR we have

∂ψR
∂ψ

=
(1− λ)(1− α)f ′(zR)

1− (1− λ)αf ′(zR)
> 0,

∂2ψR
∂ψ2 =

(1− λ)f ′′(zR)(∂zR∂ψ )2

1− (1− λ)αf ′(zR)
,

∂3ψR
∂ψ3 =

(1− λ)[f ′′′(zR)(∂zR∂ψ )3 + 3αf ′′(zR)∂zR∂ψ
∂2ψR
∂ψ2

]

1− (1− λ)αf ′(zR)
.

The fact that ∂ψR
∂ψ > 0 implies that 1 − (1 − λ)αf ′(zR) > 0 and ∂zR

∂ψ > 0. Then it is straight-

forward to check that ∂
2ψR
∂ψ2

> 0 and ∂3ψR
∂ψ3

> 0. This completes the proof that the steady-state

ψ is unique.

Next, we show that ψ ≥ x̂. By (12),

H(ψ) = x̂+ [(1− x̂)ψR(ψ)− x̂(1− ψL(ψ))].
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By earlier results, it suffi ces to show H(x̂) ≥ x̂, which is equivalent to (1 − x̂)ψR(x̂) − x̂(1 −
ψL(x̂)) ≥ 0. Somewhat abusing the notations, let zL = 1 − (1 − α)x̂ − αψL and zR =

(1 − α)x̂ + αψR. When ψ = x̂, (10) becomes 1 − ψL = (1 − λ)
∑

k pkz
k
L and (11) becomes

ψR = (1− λ)
∑

k pkz
k
R. By Lemma 3, 1− ψL ≤ ψR when ψ = x̂ ≥ 1/2, thus we have zL ≤ zR.

Note that

(1− x̂)zR − x̂zL = α[(1− x̂)ψR(x̂)− x̂(1− ψL(x̂))].

Thus it suffi ces to show that (1− x̂)zR − x̂zL ≥ 0 or 1−x̂
x̂

zR
zL
− 1 ≥ 0. Again by (10) and (11),

(1− x̂)zR − x̂zL = α(1− λ)
∑
k

pk[(1− x̂)zR
k − x̂zLk],

which leads to
1− x̂
x̂

zR
zL
− 1 = α(1− λ)

∑
k

pkz
k−1
L [

1− x̂
x̂

(
zR
zL

)k − 1]. (28)

Now suppose 1−x̂
x̂

zR
zL
− 1 < 0. Because zL ≤ zR, 1−x̂

x̂ ( zRzL )k − 1 ≥ 1−x̂
x̂

zR
zL
− 1 for all k. Given

that α(1 − λ)zk−1
L < 1 for all k and the LHS of (28) is strictly negative, for each k, the term

in the RHS of (28) is either positive or strictly less negative than the LHS. Thus, (28) cannot

hold with equality, leading to a contradiction. Therefore, we must have 1−x̂
x̂

zR
zL
− 1 ≥ 0.

Part (ii). The result that ψR < ψ < ψL directly follows from Lemma 3. Finally, to show

that ψ is increasing in x̂, consider any x̂′ > x̂′′ ≥ 1/2, and denote the corresponding steady-

state ψ as ψ′S and ψ′′S , respectively. Note that H(ψ′′S ; x̂′′) = x̂′′ψL(ψ′′S) + (1 − x̂′′)ψR(ψ′′S),

and ψL(ψ′′S) > ψR(ψ′′S) by Lemma 3. Therefore, H(ψ′′S ; x̂′) = x̂′ψL(ψ′′S) + (1 − x̂′)ψR(ψ′′S) >

H(ψ′′S ; x̂′′) = ψ′′S . Combined with the fact that the H(ψ) curve crosses the 45-degree line from

above, this implies ψ′S > ψ′′S . This proves that ψ strictly increases in x̂.

Proof of Lemma 5.
Proof. Part (i). First consider the single-friend network. With p1 = 1, (13) becomes

ψ − x̂ =
(1− λ)(1− α)

1− (1− λ)α
(ψ − x̂),

which implies that ψ = x̂.

Under the infinite-friend network, by (10) and (11), we have ψL = 1 and ψR = 0. Then

ψ = x̂ based on (12). Finally, consider the case of any generic network with α = 1. By (10)

and (11), again we have ψL = 1 and ψR = 0. Therefore, ψ = x̂.

Part (ii). To show ψ > x̂, we follow similar steps as in the proof of part (ii) of Lemma 4,

where the weak inequality is proved. With a generic network and x̂ > 1/2, following part (iii)

40



of Lemma 3, we can show that ψR > 1− ψL if ψ > 1/2, which leads to zR
zL
> 1. Then in part

(ii) of Lemma 4, 1−x̂
x̂ ( zRzL )k − 1 > 1−x̂

x̂
zR
zL
− 1 for all k. Now suppose 1−x̂

x̂
zR
zL
− 1 = 0. Then

1−x̂
x̂ ( zRzL )k − 1 > 0 for all k ≥ 2. Therefore, the RHS of (28) is strictly positive, contradicting

the equality. Therefore, H(x̂) > x̂ and ψ > x̂.

Finally, we show that ψ decreases in α. By (10) and (11),

∂ψL
∂α

= −(1− λ)f ′(zL)[−(1− α)
∂ψ

∂α
+ ψ − ψL − α

∂ψL
∂α

]

=
(1− λ)f ′(zL)

1− α(1− λ)f ′(zL)
[(1− α)

∂ψ

∂α
− ψ + ψL]

=
∂ψL
∂ψ

∂ψ

∂α
+

(1− λ)f ′(zL)

1− α(1− λ)f ′(zL)
(1− x̂)(ψL − ψR).

The last equality follows from ψL − ψ = (1− x̂)(ψL − ψR). Similarly,

∂ψR
∂α

= (1− λ)f ′(zR)[(1− α)
∂ψ

∂α
− ψ + ψR + α

∂ψR
∂α

]

=
(1− λ)f ′(zR)

1− α(1− λ)f ′(zR)
[(1− α)

∂ψ

∂α
− ψ + ψR]

=
∂ψR
∂ψ

∂ψ

∂α
− (1− λ)f ′(zR)

1− α(1− λ)f ′(zR)
x̂(ψL − ψR).

The last equality follows from ψR − ψ = −x̂(ψL − ψR). Combine the above results,

∂ψ

∂α
= x̂

∂ψL
∂α

+ (1− x̂)
∂ψR
∂α

= [x̂
∂ψL
∂ψ

+ (1− x̂)
∂ψR
∂ψ

]
∂ψ

∂α

+x̂(1− x̂)(1− λ)(ψL − ψR)[
f ′(zL)

1− α(1− λ)f ′(zL)
− f ′(zR)

1− α(1− λ)f ′(zR)
]

∝
f ′(zL)

1−α(1−λ)f ′(zL) −
f ′(zR)

1−α(1−λ)f ′(zR)

1− [x̂∂ψL∂ψ + (1− x̂)∂ψR∂ψ ]
, because ψL > ψR

∝ f ′(zL)

1− α(1− λ)f ′(z∗L)
− f ′(zR)

1− α(1− λ)f ′(z∗R)
, because

∂ψ

∂x̂
> 0

< 0.

The last inequality holds because f ′(z) is increasing in z and zL < zR, as shown earlier.

Proof of Proposition 5.
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Proof. We first show the existence of a solution for ∆ ∈ [0, t]. With x̂ being the horizontal axis

and ψ the vertical axis, a solution is an intersection of the SS-curve defined by the steady-state

equations (10)-(12) and the PE-curve defined by the pricing equation (14). Both curves are

continuous. We can verify that (1
2 ,

1
2) is the starting point of the SS-curve. For the PE-curve,

based on (14) and the fact that dψ
∂x̂ > 0, ψ ≥ 1/2 when x̂ = 1/2. Therefore, the starting point

of the PE-curve is weakly above the SS-curve. Now consider the ending point at x̂ = 1
2 + ∆

2t .

By lemma 4, on the SS-curve ψ(1
2 + ∆

2t) ≥
1
2 + ∆

2t . In addition, by the pricing equation (14),

on the PE-curve ψ = 1
2 when x̂ = 1

2 + ∆
2t , as

dψ
dx̂ > 0. Therefore, the PE-curve is weakly

below the SS-curve at the ending point. By continuity, the two curves must intersect at some

x̂ ∈ [1
2 ,

1
2 + ∆

2t ], which is a solution. As x̂e ∈ [1
2 ,

1
2 + ∆

2t ], we must have x̂e = 1/2 when ∆ = 0,

which implies that ψe = 1/2 as well.

Next, the uniqueness of candidate equilibrium follows from the same proof as in Proposition

1. That the PE-curve is downward sloping follows from the pricing equation (14) and Lemma

A2 in the Online Appendix. The SS-curve is upward sloping by Lemma 4. Thus, the two

curves can only have one intersection and the candidate equilibrium is unique.

Finally, following an argument similar to the proof of Proposition 1, by Lemma A2 in the

Online Appendix the second-order conditions are satisfied if either λ or α is large enough,

or the network is well-connected or the single-friend network. Thus, the suffi ciency of the

first-order conditions is guaranteed.

Proof of Proposition 6.
Proof. Part (i). Following part (i) of Lemma 5, under both networks ψ = x̂. And thus dψdx̂ = 1

at any x̂. The results immediately follow.

Part (ii). It is suffi cient to show that dψdx̂ |x̂= 1
2
is decreasing in α. Let z ≡ (1−λ)

∑
k kpk[(1−

α)/2 + αψR]k−1. Then (16) can be written compactly as

dψ

dx̂
|x̂= 1

2
= (1− 2ψR)

1− αz
1− z . (29)

By definition,

∂z

∂α
= (1− λ)

∑
k

k(k − 1)pk[(1− α)/2 + αψR]k−2(ψR −
1

2
+ α

∂ψR
∂α

) < 0,
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as by Lemma 3, ψR < ψ = 1
2 and

∂ψR
∂α < 0. Now differentiating (29) with respect to α, we get

∂2ψ

∂x̂∂α
|x̂= 1

2
∝ −2

∂ψR
∂α

(1− αz)(1− z) + (1− 2ψR)[−z(1− z) + (1− α)
∂z

∂α
]

= −2z(ψR −
1

2
)(1− z) + (1− 2ψR)[−z(1− z) + (1− α)

∂z

∂α
]

= (1− 2ψR)(1− α)
∂z

∂α
< 0.

In the first equality above we used the result that ∂ψR
∂α =

z(ψR− 1
2

)

1−αz , which can be derived from

(11). Therefore, dψdx̂ |x̂= 1
2
is decreasing in α.

Proof of Proposition 7.
Proof. Part (i). Because ψR strictly decreases in α (Lemma 3), by (17) W strictly increases

in α.

Part (ii). By Proposition 6, under the extreme networks dψ
dx̂ = 1 for all α. The result

immediately follows part (i).

Part (iii). Using the notations and results in the proof of Proposition 6, and let y ≡
(1− α)/2 + αψR, from (18) we compute

∂CS

∂α
∝ (ψR −

1

2
)(1− αz)∂ψR

∂α
+

1− z
ψR − 1

2

∂ψR
∂α

+
−z(1− z) + (1− α) ∂z∂α

1− αz

∝ (ψR −
1

2
)2(1− αz)z + (1− α)(1− λ)

∑
k

pkk(k − 1)yk−2(ψR −
1

2
+ α

∂ψR
∂α

)

∝ 1

2
(1− 2ψR)(1− αz)2z − (1− α)(1− λ)

∑
k

pkk(k − 1)yk−2. (30)

In the derivation we used the fact that ψR < 1/2.

To determine the sign of (30), define z′ as follows and recall z:

z′ ≡ (1− λ)
∑
k

pkk(k − 1)yk−2 = (1− λ)[2p2 + 6p3y + ...],

z = (1− λ)[p1 + 2p2y + 3p3y
2 + ...].

Note that y < 1/2 because ψR < 1/2. Suppose p2 ≥ p1. Because y < 1/2, z
′−z

1−λ ≥ 2p2(1− y)−
p1 > p2 − p1 ≥ 0; that is, z′ ≥ z. Then (30) is less than 1

2z
′ − (1 − α)z′, which is negative if

α ≤ 1/2. Next consider the case that p1 = 0. Now y ≤ 1/2 implies that z′ ≥ 2z. Then (30) is

less than 1
2z
′ − 2(1− α)z′, which is negative if α ≤ 3/4.
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Proof of Proposition 10.
Proof. Part (i). By (19), it is obvious that P ∗ is decreasing in δ.

Part (ii). Under the k-friend networks, by (19) we can calculate that P ∗|k+1 − P ∗|k ∝
−1 + δΦ(k), where

Φ(k) = (k − 1) + (1− λ)(
1

2
)k−1.

When k = 1, Φ(k) = 1−λ and hence P ∗|2−P ∗|1 < 0. When k is vary large, P ∗|k+1−P ∗|k > 0

as long as δ > 0. We can also verify that Φ(k + 1) − Φ(k) = 1 − (1 − λ)(1
2)k > 0 for any

k ≥ 1. That is, Φ(k) is monotonically increasing in k. Then, there exists a k̂ ≥ 2 such

that P ∗|k+1 − P ∗|k is negative when k ≤ k̂ and is positive when k ≥ k̂. Moreover, because

P ∗|k+1 − P ∗|k is increasing in δ, the cutoff k̂ decreases in δ. It can be also verified that k̂ = 2

when δ = 1 and k̂ →∞.

Proof of Proposition 11.
Proof. Part (i). By (20), dψT

dP1,T
= d(1−ψT )

dP2,T
= − 1

2tφF,T . Sometimes we write φF,T as φF,T (ψT−1),

emphasizing that it is a function of ψT−1. First, we solve the pricing game in period 2, given

ψ1. Firm 1’s and firm 2’s profits in period 2 are Π1,2 = P1,2ψ2 and Π2,2 = P2,2(1 − ψ2),

respectively. The first-order conditions yield

(2P1,2 − P2,2 − t)φF,2 = 2t(1− λ)
∑
k

pkψ
k
1,

(2P2,2 − P1,2 − t)φF,2 = 2t(1− λ)
∑
k

pk(1− ψ1)k.

By the above equations, we get the equilibrium prices:

P1,2 = t
1− 1

3(1− λ)
∑

k pk[(1− ψ1)k − ψk1]

φF,2(ψ1)
, (31)

P2,2 = t
1− 1

3(1− λ)
∑

k pk[ψ
k
1 − (1− ψ1)k]

φF,2(ψ1)
. (32)

Then we can compute firm 1’s equilibrium profit in period 2 as a function of ψ1:

Π1,2(ψ1) =
t

18φF,2(ψ1)

[
2 + φF,2(ψ1) + 2(1− λ)

∑
k

pkψ
k
1

]2

.

In the symmetric equilibrium, ψ1 = 1/2. This leads to φF,2 = 1− (1− λ)
∑

k pk(
1
2)k−1 and

∂φF,2
∂ψ1
|ψ1=1/2 = 0. Moreover, by (31) and (32), we have P1,2 = P2,2 = P ∗2 , where P

∗
2 is given by

44



(21). In addition,
dΠ1,2(ψ1)

dψ1

|ψ1=1/2 =
2t

3

(1− λ)
∑

k pkk(1
2)k−1

1− (1− λ)
∑

k pk(
1
2)k−1

.

Next, we solve the pricing game in period 1. Suppose firm 2 chooses P ∗1 in period 1. Firm

1 chooses P1,1 to maximize its discounted profit Π1 = P1,1ψ1 + δΠ1,2(ψ1). The first-order

condition yields

2P1,1 − P ∗1 − t+ δ
dΠ1,2

dψ1

=
2t(1− λ)

∑
k pkψ

k
0

φF,1(ψ0)
.

Using the symmetry P1,1 = P ∗1 , and ψ0 = 1/2, we get the expression of P ∗1 in (21). Finally, by

(21), it is obvious that P ∗1 < P ∗2 .

Part (ii). By (19) and (21), it is clear that P ∗1 > P ∗. Actually, if we define δ̃ ≡ 2
3δ, then

P ∗1 (δ) = P ∗(δ̃). Therefore, we can apply part (ii) of Proposition 10: there is a cutoff integer k̃

such that P ∗1 is decreasing in k when k ≤ k̃ and increasing in k when k > k̃. As k̂ is decreasing

in δ, δ̃ < δ implies that k̃ > k̂.
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Figure 1: Comparative Statics

Figure 2: The ψ(x̂) Curve as α Changes
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Figure 3: Homophily and Welfare with Symmetric Firms
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