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Abstract 

We propose a two-step guessing game to measure the depth of thinking. 
We apply this method to the P beauty contest game. Using our method, 
we find that 81% of subjects do not make choice following best response 
reasoning while the classical method would suggest only 12%. The result 
suggests that the classical method has the fundamental problem that it 
cannot distinguish if a submitted number is due to best response 
reasoning or not. It also suggests that traditional level k analysis falsely 
attributes some sophistication to random players, and that the degree of 
false attribution is large. Our procedure provides an alternative way to 
identify whether the individual has best response reasoning which is 
essential for any positive level of depth of thinking and differentiates 
between the depth of thinking and random choice, and hence provides a 
very different conclusion, which is suggestive of limitations of the 
classical method.  
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1. Introduction 

In the classical P beauty game (Nagel, 1995), each player submits a number between 0 and 100 (0 

and 100 inclusive). The player whose submitted number is closest to p*average of the submissions 

wins the prize, where p is any number between 0 and 1 (0 and 1 inclusive). Thus, a player should 

not submit a number higher than p*100 as she will lose the game for sure. The unique equilibrium 

is to submit zero. A player who submits a number higher than p*100 can be considered to be 

bounded rational. Yet, in the classical P beauty game, when a player submits a number lower than 

p*100, it is unclear if the player chooses the number because he can formulate the best response 

but not sure about the level of the other players or because he can’t formulate the best response 

and chooses the number for other reasons, e.g., random choice. It is plausible that a subject who 

does not understand the game may choose a number randomly.1 If so, the submitted number will 

be likely to be larger than zero and hence being wrongly interpreted as reflecting some sort of 

ability to formulate the best response.  

This paper proposes a two-step guessing game to accurately measure the depth of 

thinking (Keynes, 1936; Nagel, 1995). Our paper makes the important point that traditional level 

k analysis falsely attributes some sophistication to random players. Our two-step procedure is as 

follows. In the first step (human version), the classical P beauty contest game is played. In the 

second step (computer version), players are randomly matched to play the two-player P beauty 

game, where player 1 submits an integer between 0 and 100, while player 2’s decision will be 

made by a computer that will submit a number which is equal to 0.9 times the number submitted 

by player 1. After the games, we elicit subjects’ underlying reasons for the submitted numbers by 

asking them to write down the reasons which we will use for text analysis.   

The unique feature of our design is that we can use the choice in the computer version of 

the beauty contest game to infer whether the player understands best response or not, and combine 

this information with his choice in step 1 to infer his depth of thinking. We illustrate the idea using 

the following example. Suppose a player submits 30 in step 1 and higher than 0 in step 2. If we 

only rely on the classical method of measuring the level of thinking, we may infer that the player 

exhibits some degree of depth of thinking (in fact, it is level 3 if the level is estimated using 

 
1 For paper on preference for randomization, see e.g., Li (2011), Gul et al. (2014), and Agranov and Ortoleva (2017).  
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elimination of iterated dominated strategies).2 Yet, note that in step 2, the player should always 

submit 0, as submitting a number higher than 0 will lose the game for sure.3 Hence, we know that 

this player, indeed, does not have strategic reasoning and should be classified as level zero (as in 

our method) rather than level 3 (in the classical method). Note that we assume that failure to best 

respond in step 2 implies failure to best respond in step 1. We admit that our measure of best 

responding may be narrow in the sense that we do not consider the case that players may have 

sophisticated strategic reasoning (i.e. generally understanding the logic of undercutting, being able 

to approximately calculate levels of arbitrary degree, etc.) and still make a mistake in best 

responding. 

One may wonder why there should be any relationship between depth of thinking in step 1 

and step 2 as the two games are not the same or subjects may not use the same reasoning when 

playing the games. This is, indeed, a valid concern, despite one may argue that both games are 

similar. As an attempt to address this concern, we analyze the reasons submitted using text 

analysis. 4  We find suggestive evidence that the reasons submitted indicate that significant 

proportion of subjects explicitly mention that they are using the same reasoning in both games.         

Our two-step procedure has several attractive features. First, the computer version in step 

2 can clearly identify the depth of thinking when there is no uncertainty about the depth of thinking 

of the other player (i.e., there is no strategic uncertainty). Thus, the number submitted does not 

depend on the belief on the number submitted by other players as in the classical beauty contest 

game. Hence, it can differentiate between a submission that differs from the equilibrium prediction 

that is due to uncertainty on the level of the other player, or due to bounded rationality or non-

strategic choice of the player. Second, it allows us to classify players into best response reasoning 

type or non-best response reasoning type. Hence, combining the choice in the two steps provides 

an estimation of the distribution of the depth of thinking of the population, as compared to the 

conventional methods such as the P beauty contest game (Nagel, 1995) and the 11-20 game (Arad 

and Rubinstein, 2012). Third, the suggestive evidence from the text analysis reveals the underlying 

 
2 Number 30 would imply level 1 if we use 50 as the reference point. 
3 To see this, let x be the player’s submitted number, then p*((x+0.9x)/2) = p*(0.95x). Since p<1, 0.9x is closer to 
p*(0.95x) than x unless x=0, in which case the player wins with 1/2 probability. 
4 A number of recent papers have adopted text analysis of reasoning in games, see e.g., Branas-Garza, et al. (2011). 
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reasons for the submitted numbers and hence can identify non-strategic choices accurately which 

cannot be achieved by looking at the numbers alone in the classical method.    

Our method can also be applied to the 11-20 game. In the 11-20 game, the two players are 

randomly matched. Each player submits a number between 11 and 20. The player will receive a 

payoff that is equal to the number submitted plus the prize. The player wins the prize if the number 

submitted is one less than the other player. In this game, a player who submitted the number 20–x 

is classified as level x, where 0 ≤ x ≤ 9 and x is an integer. The game has no pure strategy 

equilibrium, but there is a unique (symmetric) mixed strategy Nash equilibrium (see Arad and 

Rubinstein, 2012). Similar to the case of P beauty contest game, using this game alone cannot tell 

whether the player submits a number because he is strategic and believes this is the best response 

to the other player’s submission or because he is non-strategic and choosing the number for other 

reasons.  

Grosskopf and Nagel (2008) conduct a two-person beauty contest game.5 In their game, 

two players are randomly matched and each player submits a number in the interval [0, 100], and 

the winner is one whose number is closest to two-thirds of the mean of the chosen numbers of the 

two players. The special feature of their game is that choosing zero is the weakly dominant strategy 

and is always the winning number regardless of the choice of the other player. They found that a 

small proportion of subjects chooses zero in the experiment, in particular, 9.85% for student 

subjects, and 36.92% for professionals who participated in economics and psychology decision-

making conferences. As an explanation, Grosskopf and Nagel (2008) argue that subjects 

misunderstand the rule of the game and choose a number that is as closest as possible to 0.7*the 

expected average of the two players.  

In other words, Grosskopf and Nagel (2008) argue that the fact that a large majority of 

subjects submit a number higher than zero is due to misunderstanding of the rule of the game. The 

key difference between our design (computer version) and Grosskopf and Nagel (2008) is that we 

 
5 Nagel et al. (2017) had a two-person beauty contest game where players are paid according to their distance to 2/3 
times the average of both numbers. In their game, choosing zero is a unique equilibrium. 
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focus on inferring best response and combine it for analysis of the classical beauty contest game. 

Further, in our computer version, choosing any number higher than zero is strictly dominated.  

Bosch-Rosa et al. (2018) conducted a one-player version of Grosskopf and Nagel’s (2008) 

two-person guessing game. In the one-player game, each subject !  picks two numbers "! ∈
[0,100] and )! ∈ [0,100] and subjects are paid for both choices, the payoff 1 − 0.05 -"! − "

#
$!%&!
" - 

for "! and 1 − 0.05 -)! − "
#
$!%&!
" - for )!. That is, the payoff depends on the absolute distance of 

each chosen number to the two thirds of the average of both numbers, and the payoff is maximized 

at "! = 0 and )! = 0. Thus, the player plays against himself. The one-player guessing game is 

similar to our computer version game.6 In both games, there is just one player and the equilibrium 

is to choose zero. 

There are three crucial differences between our two-step guessing game and the one-player 

guessing game of Bosch-Rosa et al. (2018). First, our two-step procedure contains the classical P 

beauty contest game, and thus our focus is on whether traditional level k analysis falsely attributes 

some sophistication to random players. Second, we elicit subjects’ reasons underlying the 

submitted numbers. We conduct text analysis on the submitted reasons which allows us to check 

the reasons behind the choices, which is important to infer if subjects’ submitted numbers are based 

on non-strategic consideration and also if subjects use the same type of reasoning across beauty 

contest games.  Third, we believe our procedure to identify best response in the computer version 

is simpler and easier to understand as it requires submitting only one number instead of two, and 

the algorithm of the computer is clearly mentioned, which makes the subjects easier to figure out 

zero is the best response.7 

Bosch-Rosa and Meissner (2020) conduct the one-player guessing game of  Bosch-Rosa et 

al. (2018) and a modified version of the two-person guessing game by Grosskopf and Nagel’s 

(2008). In their modified version of two-person guessing game, subjects are matched in pairs and 

 
6 We developed our research idea independently and conducted the experiment in 2018. 
7 Our computer version is essentially a decision problem as only one player makes the decision while the one-player 
guessing game by Bosch-Rosa et al. (2018) is a game with two selves making two decisions. Thus, it is 
automatically simpler and easier to figure out zero is best response (or optimal choice) in our problem. In the one-
player guessing game, however, it needs some logic induction starting with a random value and then calculate the 
best responses of two selves iteratively to figure out (0,0) is an equilibrium as mentioned by Bosch-Rosa and 
Meissner (2020). 
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asked to pick a number  /! ∈ [0,100], and the payoff is based on the absolute distance of each 

subject in the pair pick to 2/3 of the average of both numbers, and the best response is no longer 

zero but to choose 1/2 of the number a player believes the other player chooses. Note that, in the 

modified version of the two-person guessing game, one can no longer infer if a subject is making 

best response (as in our computer version). They find that majority of subjects fail to understand 

the structure of the one-player guessing game, and subjects with a better understanding submit 

choices closer to the Nash Equilibrium in the modified two-player guessing game.  

Costa-Gomes and Crawford (2006) conduct two-person beauty contest games that are, 

however, very different from our design and Grosskopf and Nagel (2008). In Costa-Gomes and 

Crawford (2006), the games are asymmetric (each player has a lower and upper limit), with 

different values (0.5, 0.7, 1.3, or 1.5) of p for different players, and dominance-solvable in 3 to 52 

rounds. Camerer et al. (2004) conducted a two-person contest game to test the cognitive hierarchy 

model. More importantly, in both Camerer et al. (2004) and Costa-Gomes and Crawford (2006), 

they cannot discriminate if a submitted number is due to a lack of best response or not.  

Our method is also connected with two other strands of literature. The first strand of 

literature is about addressing measurement errors in experiments using multiple measures (see e.g., 

Gillen et al., 2019). In the highly influential paper, Gillen et al. (2019) demonstrate that 

experimental results on three classic experiments on overconfidence, risk, and ambiguity, change 

substantially when experimental measurement error is accounted for.  

The second strand of literature is about testing level-k and related models (see e.g., Duffy 

and Nagel, 1997; Ho et al., 1998; Bosch-Domenech et al., 2002; Costa-Gomes and Crawford, 2006; 

Crawford and Iriberri, 2007) which relies on accurate identification of strategic reasoning and 

depth of thinking.8  It is thus important to have an accurate measure of depth of thinking for 

accurately testing level-k models.    

A few recent papers (Friedenberg et al., 2018; Jin, 2018; Alaoui et al., 2020) have 

investigated a related question in disentangling whether level-k behavior is due to cognitive 

limitations or beliefs about others.  Our research question is different in the sense that it is more 

about how to determine whether the player uses best response using a very simple way. In our 

 
8 See Nagel et al. (2017) for an extensive review.  
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method, when a subject submits zero (positive number) in the computer version of the P beauty 

contest game, we can be sure that she is likely of having (no) best response, and hence her 

submitted number in the classical P beauty contest game is likely due to her beliefs about others 

(lack of best response), under the assumption that failure to best respond in step 2 implies failure 

to best respond in step 1. In this sense, our study is more about detecting whether the subject 

understands best response in the P beauty contest game. Note that in these papers, they focus on 

measuring cognitive limits on how many steps the players can think ahead. We, instead focus on 

investigating, arguably a more fundamental question, whether the player understands best response. 

Another difference is about the identification strategy and the “game” used. Alaoui et al. (2020) 

use the modified 11-20 game (Arad and Rubinstein, 2012) and a “tutorial method” to teach subjects 

about game theory. Friedenberg et al. (2018) and Jin (2018) both use ring games which was first 

introduced by Kneeland (2015) to study higher-order rationality. Our identification strategy relies 

on the novel design in the “computer version” and has the advantage that it can differentiate 

between best response and random choice, as well as being very simple and easy to understand. 

The main findings of this study can be summarized as follows. We find that a significant 

proportion of players do not exhibit best response reasoning. In the computer version of the two-

person beauty contest game, about 81% of players submit a number higher than 0 in the computer 

version, hence indicating non-understanding of best response. We combine the best response 

measure in the computer version with the human version of the beauty contest game, under the 

assumption that failure to best respond in step 2 implies failure to best respond in step 1. We find 

that about 81% of subjects are level zero, while the classical method would suggest only 12%. 

Taken together, our result suggests that the classical method falsely attributes some sophistication 

to random players, and the degree of false attribution is large. It should be noted that our main 

contribution is not about the absolute percentage of players exhibiting strategic reasoning, as this 

can differ substantially across different subject groups (Levitt, List, and Sadoff, 2011).9  

The text analysis on the underlying reasons for the submitted numbers reveals suggestive 

evidence that the classical method will wrongly classify random choice as strategic choice. It also 

suggests that subjects tend to use the same reasoning across the games and hence supporting the 

 
9 See also Alaoui and Penta (2015)  for a model of endogenous depth of thinking where the player’s “depth of 
reasoning” is endogenously determined. Gill and Prowse (2016)  found that participant’s choices in the P beauty 
contest game respond positively with the cognitive ability of their opponents.   
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validity of our approach. More importantly, it suggests that our approach is able to identify most 

random choice as non-best response.  

 The rest of the paper is organized as follows. Section 2 reports the theoretical analysis, and 

section 3 reports the experimental design. Section 4 reports the experimental results. Section 5 

concludes. 

 

2. Theoretical Foundation 
In general, a player’s decision in a game is mainly influenced by two factors. One is the player’s 

belief about other players’ choices. The other is how the player responds to his belief about other 

players’ choices. Based on the second factor, we can classify players into two categories. One is 

those who can best respond to their beliefs about opponents’ choices, and the other is those who 

cannot. We call the players in the first category strategic players, and the players in the second 

category non-strategic players. We assume that whether a player is strategic or not is an inherent 

ability of the player, and thus, a player who is strategic in some game will also be strategic in some 

similar games and a player who is non-strategic in some game will also be non-strategic in some 

similar games.10 

More specifically, our two games (the classic beauty contest game (N=2) and the computer 

version of beauty contest game) are quite similar, and we should expect that whether a player is 

strategic or not in a game implies whether the player is strategic or not in the other game. In 

addition, note that in the computer version of beauty contest game, there is no strategic uncertainty 

about the computer’s choice (as the computer’s choice is passively determined by the human 

player’s choice). That is, for the human player in the computer version, there is no uncertainty 

about his belief about the opponent’s choice. Thus, the only factor that determines a player’s choice 

in the computer version is whether he is a strategic player or a non-strategic player. This implies 

that if a player chooses a number greater than zero in the computer version, then he is likely a non-

strategic player, and if the player chooses a number equal to zero, then he is likely a strategic 

player. We can then use this information to get a better understanding of the player’s choice and 

 
10 Using text analysis on the reasons behind the submitted numbers, we obtain supportive evidence that subjects use 
the same reasoning across the games. 
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depth of thinking in the classic version of the beauty contest game. In particular, if a player is 

strategic in the computer version, then, we assume that, he should also be strategic in the classic 

version, and thus his choice in the classic version indeed reflects how he thinks his opponent’s 

choice and thus reflects the player’s depths of thinking. On the other hand, if a player is non-

strategic in the computer version, then, we assume that, he should also be non-strategic in the 

classic version, and thus the player’s choice in the classic version is more like a random number 

and thus cannot be used to infer the player’s depth of thinking. 

Difference with Grosskopf and Nagel (2008) 

Grosskopf and Nagel (2008) argue that in the P beauty contest game, players may misunderstand 

the rule of the game and choose a number that is as closest as possible to p*average of the two 

players. We adopt this assumption for our theoretical analysis. With this assumption, in the 

following, we first show that in the 2-person P beauty contest game (Grosskopf and Nagel, 2008), 

a player with the misunderstanding will submit a number greater than zero in equilibrium, and then 

show that in our computer version of the 2-person P beauty contest game, a (strategic) player will 

always submit zero in equilibrium. 

Consider the 2-person P beauty contest game. We assume that there is 0 proportion of non-

strategic players, who will randomly choose a number between 0 and 100.11 The remaining 1 − 	0 

proportion of players are “strategic”, but they “misunderstand” the rule of the game, and choose a 

number that is as closest as possible to 0.7*the expected average of the two players (as in 

Grosskopf and Nagel, 2008). In particular, we use 2 to denote the number chosen by a strategic 

player. Then, the expected value of the number chosen by his opponent is 0 × 50 + (1 − 0) × 2 

(noting that if his opponent is non-strategic (which occurs with probability 0), then the average 

number of his opponent is 50, and if his opponent is strategic (which occurs with probability 1 −
0), then the number chosen by his opponent will be 2). So, we have: 

2 = 0.7 × 0.5(2 + 0 × 50 + (1 − 0) × 2) 

 
11 If we don’t have non-strategic types (i.e., all players are strategic), then it can be shown that even if we have the 
assumption by Grosskopf and Nagel (2008), (strategic) players will submit zero in equilibrium. 
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Solve the equation, we have 2 = 17.50/(0.3 + 0.350). It can be verified that if 0 = 0, then 2 ≈
0; if 0 = 0.1, then 2 ≈ 5; if 0 = 0.5, then 2 ≈ 18; and if 0 = 1, then 2 ≈ 27. 

Now consider the computer version of the 2-person P beauty contest game. If a player is 

non-strategic, then he still randomly chooses a number between 0 and 100. If a player is strategic, 

we still assume that he “misunderstands” the rule of the game, and choose a number that is as 

closest as possible to 0.7*the expected average of the two players. In particular, we use = to denote 

the number chosen by a strategic player, then we have:  

= = 0.7 × 0.5(= + 0.9=) 

Solve the equation, we have = = 0. That is, in the computer version of 2-person P beauty 

contest game, a strategic player will always choose 0. 

  

3. Experimental Design 

We conduct an online experiment in 2018 with 192 subjects who are undergraduates in a major 

university in Hong Kong. The subjects are randomly recruited from an email announcement to 

approximately 3,000 subjects registered in the subject pool. Subjects receive HKD 20 for 

participation and payoff from a randomly drawn game.12 In addition to the P beauty contest games, 

we also elicit subjects’ reasons of choices for the respective beauty contest games, attitudes on 

investing in stock with price bubbles, and cognitive reflection test score (Frederick, 2005).13  

 

Two-Step Guessing Game 

Step 1 (Human version): Each player chooses a number between 0 and 100 (0 and 100 inclusive). 

The participant with the chosen number being closest to 0.7 times the average of all chosen 

numbers wins a prize of HKD 20. That is, the subject whose submitted number is closest to the 

average of all submitted numbers x 0.7 wins. If two or more participants win, the winner will be 

randomly chosen. 

 
12 1 USD equals to about HKD 7.78. 
13 See online appendix A for the results on price bubbles and cognitive reflection test. 
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Step 2 (Computer version): Participants are randomly matched into groups. Each group is 

consisted of two participants, one is called participant 1, and the other is called participant 2. Both 

participants choose a number between 0 and 100 (0 and 100 inclusive).  

However, participant 2's choice will be implemented by a computer which will always 

choose a number that is equal to the number chosen by participant 1 times 0.9.  That is, participant 

2's number = participant 1's number x 0.9  

The participant with the chosen number (i.e., participant 1’s chosen number and participant 

2’s number chosen by the computer) being closest to 0.7 times the average of the chosen numbers 

wins a prize of HKD20. 

That is, the one whose submitted number is closest to the following number wins:(average 

of submitted numbers by participant 1 and participant 2) x 0.7. If two or more participants win, the 

winner will be randomly chosen. 

We conduct two versions of the human version, n=2, and n>2. In the human (n>2) version, 

subjects play the classical P beauty game with all the subjects. 14 In the human (n=2) version, 

subjects play the p beauty contest game with another participant. Each subject plays all the three 

games, human version (n>2), human version (n=2), and computer version. We estimate the depth 

of thinking in the P beauty game in the human version in the following way. A player who 

submitted a number larger than 70 was classified as level 0. In general, level ? player submits a 

number in the range of (0.7'%(100, 0.7'100].  

4. Experimental Results 
Figure 1 reports the cumulative distribution function (CDF) of the choices in the three versions of 

the beauty contest game. A striking pattern is that the CDF of computer version appears to be very 

different from the CDF of human version (n>2) and human version (n=2), while the latter two 

largely resemble each other. More specifically, there are more subjects with submitted numbers 

 
14 In our online experiment, a total of 9 games were conducted. These 9 games are (1) beauty contest game (n>2, 
human version), (2) beauty contest game (n=2, computer version), (3) beauty contest game (n=2, human version), 
(4) beauty contest game (70 human participants and 30 computers), (5) beauty contest game (90 human participants 
and 10 computers), (6) beauty contest game (99 human participants and 1 computer), and (7-9) three games on 
choosing 1-10.  In the current paper, we focus on the game (1), (2), and (3). 
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less than 50 in the computer than in the human version (n>2) and human version (n=2). In fact, the 

mean of the numbers submitted in the computer version is 38.48, which is significantly lower than   

44.54 of the human version (n>2) and 44.95 of the human version (n=2), with p-value equals to 

0.003, and 0.003 under paired t-test, respectively. There is no significant difference between the 

two human versions, with p-value equals to 0.81 under paired t-test.15 This supports the hypothesis 

that removal of strategic uncertainty in the computer version changes subjects’ choices 

significantly. The distribution of choices is significantly different between computer version and 

human version (n>2), and human version (n=2), with p-value equal to 0.002, and 0.003, under the 

Wilcoxon Sign-rank test respectively. There is no significant difference on distribution of choices 

in the two human versions, with p-value equals to 0.95 under the Wilcoxon Sign-rank test.   

Result 1: The mean of numbers submitted in the computer version of the beauty contest 

game is lower than in the human versions, while there is no difference between human version 

(n>2) and human version (n=2). 

 

Figure 1. Cumulative Density Function of Choices 

 
15 A similar result is obtained when using Sign test. There is significant difference on median of choices in human 
version (n>2) and computer version, and human version (n=2) and computer version, with p-value equals 0.01, 
under Sign test, respectively. There is no significant difference between the two human version, with p-value equals 
to 1.00 under Sign test.   
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Figure 2. Submitted Numbers 

a. Human Version (n>2) and Computer Version 

 

 

 

 

 

 

 

b. Human Version (n>2) and Computer Version 

 

 

 

 

 

 

 

We find that 19.17% of subjects submitted 0 in the computer version (n=2) of the beauty 

contest game. Under our framework, this implies that only 19.17% of subjects’ choices are 

consistent with best response.16 If a subject submits a number higher than 0 (i.e., no best response) 

in the computer version, she is classified as level 0 in the combined analysis.17 However, it should 

 
16 We find that subjects with higher cognitive reflection test score are not more likely to exhibit best response., 
suggesting that ability to formulate best response is distinct from cognitive ability. 
17 We assume that the ability for formulating best response is a fixed trait. While the computer version and human 
version have different degree of complexity, we believe that it is reasonable to assume that a subject who chooses 
zero in the computer version would not choose above 70 in the human version. This is, indeed, what we found. 
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be noted that our approach assumes that when subjects fail to best respond in step 2, they also fail 

to best respond in step 1.  We also assume that any number submitted other than zero in step 2 are 

considered to be not best responding. That is, we do not consider the possibility of mistakes. If a 

subject submits higher than 70 in the human versions, she is classified as level 0 in the respective 

treatments.   

Result 2: Only 19% of subjects’ choices are consistent with best response. 

Figure 2a and Figure 2b plots the submitted numbers in the human version (n>2) against 

the computer version, and the human version (n=2) against the computer version, respectively. 

Conditional on subjects who submitted zero in the computer version, none submitted higher than 

70 in the human version (n>2) and one (2.7%) submitted higher than 70 in the human version 

(n=2).  Conditional on subjects who submitted higher than 70 in the human version (n>2), none 

submitted zero in the computer version. Conditional on subjects who submitted higher than 70 in 

the human version (n=2), only one (3.3%) submitted zero in the computer version. This provides 

the evidence that the game in step 2 is a good measure on best response, and the choices in the two 

steps are correlated.  

Table 1 reports the estimated depth of thinking when using choices from the human version 

(n>2), and when combining choices from the human version (n>2) and the computer version, as 

well as combining choices from the human version (n=2) and computer version.  It shows the 

striking finding that the distributions on the depth of thinking change dramatically when we 

combine the choices. In particular, combining the human version (n>2) and computer version, 

about 81% of subjects are classified as level 0 in the combined analysis, while it is only 12% when 

using choices from the human version (n>2) only. Combining the human version (n=2) and 

computer version, about 81% of subjects are classified as level 0 in the combined analysis, while 

it is only 16% when using choices from the human version (n=2). Note that the conclusion relies 

on a “narrow” view of level k models, one in which any failure of best response implies level 0. If 

we take a broader view of what it means to exhibit strategic reasoning (generally understanding 

the undercutting nature of the game, possibly making some mistakes in best responding, etc.), it is 

plausible that the percentage of subjects not exhibiting strategic thinking in the beauty contest 

game is less than 81%. 
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In summary, the combined analysis offers the advantage that random choice/choice based 

on lack of best response is identified, and it suggests that the classical method falsely attributes 

some sophistication to random players, and the degree of false attribution is large. 

Result 3: Combining choices in the human versions and computer version leads to a 

substantially different conclusion on depth of thinking.   

Table 1. Estimated Depth of Thinking in the P Beauty Contest Game 

Level 0 1 2 3 4 5 6 7 8 9 10 11 ≥12 

Classic Method:  
Using Choices from 
Human Version (n>2) 

0.12 0.38 0.21 0.10 0.06 0.01 0.02 0.04 0 0 0.05 0.02 0.05 

Classic Method:  
Using Choices from 
Human Version (n=2) 

0.16 0.37 0.17 0.08 0.06 0.01 0.02 0.02 0.01 0 0.01 0.03 0.08 

Our Method: 
Combining Choices 
from Human (n>2) and 
Computer Version 

0.81 0.03 0.06 0.04 0.01 0.01 0 0.01 0 0 0 0 0.05 

Our Method: 
Combining Choices 
from Human (n=2) and 
Computer Version 

0.81 0.05 0.03 0.01 0.01 0 0.01 0.01 0 0 0 0.01 0.08 

 

For those submitted 0 in step 2, 40.5% in human version (n>2) and 24.3% in human version 

(n=2) submitted 0 in step 1, respectively. Among subjects who submitted 0 in step 2, in the human 

version (n=2), only 1 (2.7%) (7, 8.9%) chose above 70 (50); in the human version (n>2), no subject 

submitted more than 70, and 3 or 8.1% submitted more than 50. Thus, it suggests that for most 

subjects who choose zero in step 2, their choices in step 1 are consistent with best response (they 

may not choose zero as they may believe others are not choosing zero).  

We find that subjects who understand best response (i.e., choosing zero) in the computer 

version tend to make a choice closer to the Nash equilibrium in the human version (n>2) and 

human version (n=2). In particular, the average number submitted in the human version (n>2) by 

those who understand best response is 26.46 which is significantly lower than 48.86 of those who 

don’t understand best response, with p-value equal to 0.00 under two-sample t-test. Similarly, the 

average number submitted in the human version (n>2) by those who understand best response is 
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26.97 which is significantly lower than 49.72 of those who don’t understand best response, with 

p-value equal to 0.00 under two-sample t-test. 

Result 4: Subjects who understand best response (i.e., choosing zero) in the computer 

version tend to make a choice closer to the Nash equilibrium in the human version (n>2) and 

human version (n=2). 

 The implication of no-best response in the computer version is that this group of subjects 

are more likely to make no-best response choices in the human versions. This, indeed, what we 

find. Conditional on no-best response in the computer version, 14.8% submit a number higher than 

70 in the human version (n>2) which is significantly higher than 0% observed with those follow 

best response, with p-value equal to 0.01 under two-sample test of proportions.  On the other hand, 

conditional on no-best response in the computer version, 18.6% submit a number higher than 70 

in the human version (n=2) which is significantly higher than 2.7% observed with those follow 

best response, with p-value equal to 0.01 under two-sample test of proportions.   

An alternative approach to estimate depth of thinking is to use mixture model to analyze a 

large set of beauty contest data  (see e.g., Stahl and Wilson, 1994; Bosch-Domènech et al., 2010; 

Georganas et al., 2015). We agree that the mixture model is appealing. However, we believe that 

our design has the unique advantage that we only need to have two steps of games which makes 

our game more practical for identifying individual levels, while the mixture model requires 

sufficiently high number of games (data) for the estimation. The mixture model is better for 

estimating levels in the population level, while our method can identity if the subject is level 0 at 

individual level. The step 2 of our game allows us to uniquely determine whether the subjects 

follow best response. In fact, this is the reason why our design does not require high number of 

games for estimation. 

 

Robustness 

An alternative way to compute the depth of thinking is to use 50 as the reference point.18 Following 

Nagel (1995), we use the geometric mean to determine the boundaries of adjacent intervals 

 
18 Note that under this method, numbers higher than 50 are not assigned for any depth of thinking.  
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between two levels of depth of thinking.19 Table 2 reports the estimated depth of thinking for 

human version (n>2) and human version (n=2), and for combined choices. It can be seen that the 

finding is similar with what is observed in Table 1 that the proportion of level zero subjects are 

substantially higher in the combined analysis than using the classic method.   

Table 2. Estimated Depth of Thinking in the P Beauty Contest Game using 50 as Reference Point 

Level 0 1 2 3 4 5 6 7 8 9 10 11 ≥12 Unclassified 
Classic Method:  
Using Choices from 
Human Version (n>2) 

0.26 0.21 0.07 0.01 0.01 0.04 0.01 0 0 0.01 0 0.02 0.05 0.32 

Classic Method:  
Using Choices from 
Human Version (n=2) 

0.22 0.18 0.07 0 0.02 0.02 0.02 0 0 0.01 0 0.03 0.09 0.36 

Our Method: 
Combining Choices 
from Human (n>2) and 
Computer Version 

0.83 0.08 0.02 0.01 0 0.01 0 0 0 0 0 0 0.05 0 

Our Method: 
Combining Choices 
from Human (n=2) and 
Computer Version 

0.83 0.03 0.01 0 0.01 0.01 0 0 0 0 0 0.01 0.08 0.04 

 
Some subjects may not perfectly best respond despite they understand the under-cutting 

logic of the beauty contest game. To address this concern, we add an analysis by allowing subjects 

to make mistakes in their response in step 2. We consider an alternative way to define whether the 

subject’s choice follow best response in step 2 by taking the possibility of subjects may make some 

mistakes in choices into consideration. In particular, we set different level of “errors” such that 

choices fall within these error ranges are still considered to be consistent with best response. We 

consider error thresholds of 3, 5, 10. That is, subjects submitted a number equal or less than 3, 5, 

and 10 are considered to be exhibiting best response when error threshold=3, error threshold=5, 

error threshold=10, respectively. Using this method, the percentage of subjects who follow best 

response in step 2 are 25.5% when error threshold=3, 28.7% when error threshold=5, 31.8% when 

error threshold=10. Table 3 shows that there are still large proportions of subjects classified as 

level zero in the combined analysis under the respective error thresholds. However, note that a 

 
19 As a robustness check, we also use 50pn, where p=0.7 and n is 0, 1, 2, … referring to the depth of thinking, to 
compute the intervals. We find that the results are similar.   
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weakness of this robustness check is that there is no iterative structure to the computer game and 

choosing anything strictly greater than 0 yields the same low payoff. 

      

Table 3. Estimated Depth of Thinking in the P Beauty Contest Game Under Different Error 
Thresholds of Best Response 

Level 0 1 2 3 4 5 6 7 8 9 10 11 ≥12 
Error Threshold=3 
Our Method: 
Combining Choices 
from Human (n>2) and 
Computer Version 

0.75 0.05 0.07 0.04 0.02 0.01 0 0.02 0 0 0 0.01 0.05 

Error Threshold=3 
Our Method: 
Combining Choices 
from Human (n=2) and 
Computer Version 

0.75 0.06 0.05 0.02 0.01 0 0.01 0.01 0 0 0 0.02 0.08 

Error Threshold=5 
Our Method: 
Combining Choices 
from Human (n>2) and 
Computer Version 

0.72 0.06 0.07 0.04 0.03 0.01 0 0.03 0 0 0 0.01 0.05 

Error Threshold=5 
Our Method: 
Combining Choices 
from Human (n=2) and 
Computer Version 

0.73 0.06 0.05 0.02 0.01 0 0.01 0.02 0 0 0 0.02 0.08 

Error Threshold=10 
Our Method: 
Combining Choices 
from Human (n>2) and 
Computer Version 

0.69 0.07 0.08 0.04 0.03 0.01 0.01 0.03 0 0 0 0 0.05 

Error Threshold=10 
Our Method: 
Combining Choices 
from Human (n=2) and 
Computer Version 

0.71 0.06 0.06 0.02 0.01 0 0.01 0.02 0.01 0 0.01 0.02 0.08 
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Text Analysis 

In the questionnaire, we ask subjects to write down how they choose the number in each of the 

beauty contest games. This allows us to conduct text analysis on the written reasons to infer their 

intentions behind the numbers they submitted.  

We first look for subjects who indicate they are choosing their numbers randomly. In the 

human version (n>2), 95.83% of subjects have written down their reasons, and among these 

subjects, 17.93% indicated that they choose the numbers randomly. For example, one subject said 

“I randomly select it”, and another said, “Just randomly choose”.  Among these subjects, the 

average number submitted is 50.51, with 5 subjects (5%) submitting a number higher than 70, and 

36% of subjects submitted a number less than 50. This implies that in the classical method these 

subjects are wrongly classified as exhibiting some positive degree of depth of thinking (as most of 

them submit a number less than 70).  

Column 1 of Table 4 reports the OLS regression where the dependent variable is the 

estimated depth of thinking in human version (n>2), and the independent variable is whether the 

subject indicated choosing randomly in the human version (n>2). The coefficient on Random 

Reason Human (n>2) is significantly negative, suggesting that those choosing randomly are 

estimated to have lower level. A similar pattern is found with human version (n=2). It suggests 

that there is a strong correlation between stated reasoning and behavior. Column 3 of Table reports 

the marginal effect estimates of probit regression where the dependent variable is whether the 

subject’s choice in computer version is consistent with best response, and the independent 

variables are random reason in the computer version, level of depth of thinking in human version 

(n>2), and level of depth of thinking in human version (n=2). While the coefficient on random 

reason is not statistically significant, the sign is consistent with our prediction. In fact, 10.7% of 

subjects who stated they chose randomly chose zero in the game, which is lower than 23.0% 

observed with subjects who didn’t give random as a reason. The regression also shows that the 

probability of best response is positively correlated with levels of depth of thinking in human 

version (n>2) and human version (n=2), suggesting that subject’s responses are correlated across 

games.      
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Table 4. Random Reasoning and Depth of Thinking 

  (1) (2) (3) 

 
Level Human 
(n>2) 

Level Human 
(n=2) 

Best Response 
Computer Version  

Random Reason 
Human (n>2) 

-4.91*** 
(1.80)   

    
Random Reason 
Human (n=2)   

-9.41*** 
(2.34)  

    
Random Reason 
Computer   

-0.05 
(0.09) 

    
Level Human (n>2) 

  
0.01*** 
(0.00) 

    
Level Human (n=2) 

  
0.01*** 
(0.00) 

    
Constant 7.17*** 11.62***  

 (1.67) (2.29)  
Observations 192 192 192 
R-squared 0.00 0.01 0.33 

Notes: Column 1 reports the OLS regression where the dependent variable is depth of 

thinking in human version (n>2). Column 2 reports the OLS regression where the dependent 

variable is depth of thinking in human version (n=2). Column 3 reports the marginal effect 

estimates of probit regression where the dependent variable is whether the subject exhibits best 

response in the computer version. Random reason human (n>2) is a dummy that equals 1 if the 

subject indicated choosing randomly in the human version (n>2), zero otherwise. Random reason 

human (n=2) is a dummy that equals 1 if the subject indicated choosing randomly in the human 

version (n=2), zero otherwise. Random reason computer is a dummy that equals 1 if the subject 

indicated choosing randomly in the computer version, zero otherwise. Level human (n>2) is the 

estimated depth of thinking in human version (n>2) under classic method. Level human (n=2) is 

the estimated depth of thinking in human version (n=2) under classic method. *, **, *** denotes 

significance at the 10%, 5%, and 1%, respectively.  
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Result 5: Significant proportion of subjects indicate that they chose randomly in the beauty 

contest games. Text analysis on the reasons behind the submitted numbers suggests that the 

classical method falsely attributes non-strategic (random choice) as exhibiting some positive 

degree of depth of thinking. 

One way to verify if our best response measure is accurate is to check the proportion of 

subjects who indicated choosing randomly are classified as not exhibiting best response.  If our 

measure is accurate, a high proportion of subjects who indicated choosing randomly should be 

classified as non-best response subjects under our method. This is, indeed, the case, 94.74% 

(human version, n>2), 89.29% (human version n=2), and 92.86% (computer version) of subjects 

who indicated choosing randomly are classified under our method as non-best response subjects 

in the respective treatments.  This, again, shows that our method is better than the classical method 

in identifying non-best response subjects. 

 We also find that 91.9% of subjects who at least explicitly indicated once they are 

submitting the number randomly are classified as exhibiting non-best response, suggesting our 

measure performs well in identifying random response.  

By looking at the reasons submitted, we can have a better judgment on whether the subjects’ 

numbers reflect best response thinking as compared to the classical method. For subjects who are 

not exhibiting best response, some indicated that they do not know what to do. For example, a 

subject wrote when explaining his choice in the computer version “The game is very complicated. 

I do not know how to have the best strategy to win.” Another wrote “Whatever I choose a number, 

I will lose the game, according to the game rule,” indicating that the subject didn’t understand the 

rule.  

Similar Reasoning Across Games 

We find that there is significant positive correlation between those indicating random as 

reasons in the three conditions. In particular, the correlation coefficients between random 

reasoning in human version (n>2) and human version (n=2) is 0.51 (p-value=0.00), human version 

(n>2) and computer version is 0.60 (p-value=0.00), human version (n=2) and computer version is 

0.75 (p-value=0.00). This offers evidence that subjects use the same reasoning across the three 
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conditions.20 In other words, if a subject is choosing the number randomly in the human version 

(n>2), she will likely be chosen randomly in the other two conditions also. This implies that the 

best response measure elicited in the computer condition is a good prediction of best response in 

the other two conditions, thus validating our method. In fact, 27.12% of subjects write down the 

same words when explaining their choices in the three conditions.      

Result 6: Significant proportion of subjects use the same reasoning in the three versions 

of the beauty contest game. 

5. Discussion 

The classical beauty contest game (Nagel, 1995) is one of the most influential experimental 

protocols that have been adopted by numerous experimental papers to measure depth of thinking 

of decision-makers. As of Nov 2020, the study by Nagel (1995) alone has received 1754 citations 

in Google scholar.  

This paper investigates whether traditional level k analysis falsely attributes some 

sophistication to random players. We propose a very simple two-step procedure to identify the 

depth of thinking in the beauty contest game. We show that by combining the choices in the two 

steps (two games), the method gives a very different conclusion, which is suggestive of limitations 

of the classical method. Using our method, we find that 81% of subjects do not have best response 

reasoning (which is essential for any positive level of depth of thinking) while the classical method 

would suggest only 12%. An interpretation of our results is that the classical method falsely 

attributes some sophistication to random players, and the degree of false attribution is large. More 

specifically, in the classical method, if the player submits any number equal or below 70, it is not 

clear the submitted number is based on best response or non-best response reasoning. In the 

computer version of our beauty contest game, if a subject submits a number higher than 0, he/she 

will lose the game for sure. As such, assuming that a subject who best respond in the computer 

version will also best respond in the human version, we can infer whether the subjects have best 

response reasoning from the choice in the computer version beauty contest game.  

 
20 Since subject give their reasoning in one game, and then immediately asked to give their reasoning in another, it is 
possible that there may be contamination of reasoning. 
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The text analysis of the underlying reasons for the submitted numbers reveals suggestive 

evidence that the classical method has the weakness of classifying random choice as strategic 

choice. The analysis suggests that our approach is able to identify most random choices as non-

best response.  

Our proposed method can identify random choice/non-strategic choice, and thus when 

combined with the classical beauty contest game will provide a very different conclusion as 

compared with the estimation of the depth of thinking using the classical game, which is suggestive 

of limitations of the classical method.  Our method adds to the growing literature on addressing 

measurement errors in experiments using multiple measures (Gillen, et al., 2019). Our result also 

implies that it is important to obtain multiple measures when eliciting preferences in experiments. 

Our two-step procedure is also very general and can be easily applied to other games as well to 

measure whether subjects exhibit strategic reasoning as game theory assumes.  

 Our method can be applied to investigate a number of interesting questions for future 

research. For example, it would be interesting to use our method to estimate the proportion of retail 

investors as well as professional investors with strategic reasoning in the financial market. It would 

also be interesting to use our method to investigate if the propensity of strategic reasoning varies 

in different types of games. 
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