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Abstract

This paper examines the effects of disclosing the actual number of participants
in innovation contests with endogenous stochastic entry. We model innovation
contests as a two-bidder all-pay auction with complete information, but in which
each bidder has to incur a private cost to participate. The contest organizer ob-
serves solvers’ participation decisions ex post and can commit ex ante to either fully
disclosing or concealing the number of participating solvers. We characterize the
equilibrium behavior of the solvers and compare the performances of the disclosure
policies by four criteria. We find that full concealment dominates full disclosure in
terms of expected total bid and expected winner’s bid. Full concealment is domi-
nated by full disclosure in terms of prize allocation efficiency and solvers’ welfare.
These findings are in sharp contrast to those under exogenous entry.
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Introduction

Companies and governments quite often sponsor or organize innovation contests. In these

contests, solvers spend irreversible efforts in order to win some prizes.1 Such contests have

triggered broad interest in the optimal design of contest schemes and prize allocation rules

to boost solvers’ performances (e.g., Moldovanu and Sela, 2001; Abrache et al., 2007; Li

and Kuo, 2013; Bonomo et al., 2017; Koçyiğit et al., 2018 ). The literature conventionally

focuses on contests with a fixed set of solvers. However, potential solvers’ availability is

often subject to exogenous or endogenous randomness. In a government-organized R&D

tournament, a participating firm may not be aware of the number of other firms who

are also invited by the government to submit proposals. Firms can be absent from the

competition for various nonstrategic reasons. For example, a research lab interested in

an innovative project may undergo a sudden budget freeze imposed by higher authorities

and be forced to quit the race. It can also be for some strategic reasons. For example,

a research lab may have to exert effort to convince higher authorities to approve their

budget proposal before they can proceed with their innovative project.

This paper studies whether an innovation contest organizer can boost solvers’ per-

formances by disclosing his exclusive information about solvers’ participation decisions.

We model innovation contests as a two-bidder all-pay auction with complete information,

but in which each potential solver has to incur a private cost to participate. Only the

organizer knows the actual number of participants, and the organizer has to announce at

the very beginning whether he will fully disclose or conceal the number of participants

and has to commit to his announcement throughout the game. The comparison across

the disclosure policies focuses on four performance measures:

• Ex ante expected total bid (or aggregate expected effort) (e.g., Moldovanu and

Sela, 2001): A benevolent government or firm might want to stimulate the market

of research and thus cares about the aggregate effort of the contenders, in which case

the losers’ efforts are equally valued as the winner’s effort.2 Revenue maximizing

contest design has been a focus of researchers in economics.

• Ex ante expected winner’s bid: A company who organizes an innovation contest

to procure some innovation (i.e., crowdsourcing contests) only values the winner’s

innovation (or proposal) and does not value those of the losers. Contest design on

maximizing winner’s bid has been the focus of researchers in operations management

(e.g., Ales et al., 2017; Chawla et al., 2019; Fu and Wu, 2020; Körpeoğlu and Cho,

2018; Serena, 2017; Terwiesch and Xu, 2008).

• Prize allocation efficiency (or ex ante expected value realization of the prize): A

1See Segev (2020) for a comprehensive survey on innovation contests.
2“Revenue” and “bids” in this paper correspond to non-contractible efforts but not to contractible

monetary transfers.
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government who organizes a contest to allocate a contract to a winner might care

about the allocation efficiency.

• Ex ante expected payoff to the solvers (or social welfare): A social planner typically

aims to maximize the social welfare.

We find that under endogenous stochastic participation, compared to fully disclosing

the information on the actually number of participating solvers, full concealment leads

to a higher expected total bid and a higher expected winner’s bid but a lower allocation

efficiency level and a lower aggregate expected payoff to the solvers. The key insight

is that in the case in which solvers’ entry decisions are endogenous, full concealment

provides more incentive to the weak solver to participate and less incentive to the strong

solver and thus can amplify the effect of leveling the playing field of the solvers, making

the competition more intense.

Our study belongs to the literature that examines the effect of disclosing the actual

number of participating contenders in contests. We extend the analysis of this issue into

a setting in which solvers are asymmetric and their entry probabilities are endogenously

determined, and we contribute novel performance ranking results to the literature.

Our study is most closely related to the work of Fu et al. (2016), who also investigate

the effect of disclosing the actual number of participating contenders in a setting with

asymmetric contenders. In their two-contender model, contenders differ in both their

valuations of the prize and their exogenous probabilities of participation. Their key in-

sight is that, under exogenous probabilities of participation, the performance rankings

of the disclosure policies depend on the solvers’ relative valuation and likelihood ratio

of participation. More specifically, concealing the information on the actual number of

participating contenders elicits a higher expected total bid than fully disclosing the infor-

mation if and only if the value of the prize to the contender who has a higher probability

of entry is sufficiently higher than that of the contender with a lower probability of en-

try. This is due to the trade-off between two effects of information disclosure — while

information disclosure can eliminate information rent of the contenders, which helps the

organizer to extract more efforts from the contenders, it would also unlevel the playing

field, which potentially discourages the contenders from exerting efforts. Moreover, in

certain scenarios, information disclosure could benefit both the organizer and the con-

tenders at the same time.3 Our study goes beyond their work by extending the analysis to

a setting with endogenous entry decisions and providing some new insights on the effects

of disclosure policies in this case. In contrast to the findings in the case with exogenous

entry, we find that information disclosure benefits the contenders and hurts the organizer

in the case with endogenous entry.

Besides the work of Fu et al. (2016), the issue has also been scrutinized by many other

3Fu et al. (2016) only provides the revenue ranking. We complete the rankings in the other three
performance measures in Proposition 4 in the Appendix.
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studies. Lim and Matros (2009) and Fu et al. (2011) study information disclosure policies

in Tullock contests in which each contender enters a contest with an exogenous probability.

They relate optimal disclosure policies to the curvature of a characteristic function. Chen

et al. (2017) go beyond these papers by introducing interdependent valuations of the prize

with private and affiliated signals. They link optimal disclosure policies with the curvature

of the cost function under both exogenous and endogenous probabilities of participation.

Feng and Lu (2016) relate optimal disclosure policies to bidders’ risk attitudes. Chen et al.

(2020) go beyond them by considering disclosure policies in the situation in which bidders

face a common bid cap. All these above mentioned studies focus on symmetric settings,

in which equally competent contenders enter the contest with the same probability. In

contrast to these studies, we investigate the cases in which contenders are asymmetric.

1 Model

Consider a two-stage contest with two potential risk-neutral solvers, 1 and 2, and one

indivisible prize. Each solver k values the prize at vk < 1. In the first stage, each solver

decides whether to participate in the contest. In order to participate, solver k has to

incur an entry cost of ck, which is solver k’s private information and is independently

drawn from the uniform distribution over [0, 1]. Each solver’s entry is unobservable to her

rival but observed by the contest organizer. The organizer has to announce publicly and

commit to his disclosure policy — either to fully conceal (Policy C) or fully disclose

(Policy D) the information on the actual number of participants.

In the second stage, each participating solver k exerts an effort (bid) bk. Bids are

submitted simultaneously and independently of each other. The solver with the highest

bid wins the prize, but all participating solvers pay their bids. Ties are resolved by random

allocation with equal probabilities. When there is a subset M of participating solvers,

solver i bids bi and obtains an interim expected utility (conditional on her participation)

Ui =


vi − bi if bi > maxj∈M\{i} bj

−bi if bi < maxj∈M\{i} bj

1
#{k∈M :bk=bi} · vi − bi if bi = maxj∈M\{i} bj.

In detail, the timing of the game is as the following:

1. The organizer publicly announces his disclosure policy before the contest starts and

commits to the announced policy throughout the game.

2. Each solver decides whether to participate in the contest.

3. The organizer learns the number of participants and implements his announced

disclosure policy.4

4It is beyond the scope of the study to provide a thorough analysis of the issue of commitment.
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4. Solvers submit their bids privately.

5. The one with the highest bid wins the prize, and ties are resolved by fair lotteries.

Before proceeding to endogenous participation, we present below the equilibrium be-

havior under exogenous probabilities of participation, which will be used later.

Lemma 1 (Equilibrium under Exogenous Probabilities of Participation (Fu et al., 2016)).

Consider the case in which the organizer implements policy C. Suppose that it is common

knowledge that solver 1 believes that bidder 2 participates with probability p2 and that

solver 2 believes that solver 1 participates with probability p1. There is a unique Nash

equilibrium (µ∗
1(p1, p2), µ

∗
2(p1, p2)) of the second stage (the bidding stage). If pjvi ≤ pivj,

where i ̸= j and i, j ∈ {1, 2}, then solver i, if she has entered, bids 0 with probability
pivj−pjvi

pivj
and randomizes uniformly on [0, pjvi] with probability

pjvi
pivj

; solver j, if she has

entered, randomizes uniformly on [0, pjvi].

2 Results

Now, let us analyze our model of all-pay auction with endogenous entry. First, consider

the subgame in which the organizer commits to policy C. In this case, the organizer

conceals the actual number of solvers before the participating solvers make their bids.

The second stage strategies of the participating solvers are described as in Lemma 1.

The first stage strategies of the solvers must be cutoff strategies, i.e., each solver k

participates if and only if her cost is below a certain threshold value ĉCk . Since each

solver’s participation cost is drawn from the uniform distribution over [0, 1], the value

ĉCk also corresponds to solver k’s probability of participation. To find an equilibrium, we

only need to pin down the equilibrium cutoffs ĉC1 and ĉC2 .

Proposition 1 (Full Concealment). Suppose v1 ≥ v2. Consider the subgame that follows

policy C. There exists a unique Bayesian Nash equilibrium. Let ([ĉC1 , µ
C
1 ], [ĉ

C
2 , µ

C
2 ]) be a

Nash equilibrium.

1. (µC
1 , µ

C
2 ) = (µ∗

1(p
C
1 , p

C
2 ), µ

∗
2(p

C
1 , p

C
2 )).

2. (pC1 , p
C
2 ) = (ĉC1 , ĉ

C
2 ) = (v1 − v1v2

1+v1
, v2
1+v1

).

The key observations in the above proposition are that: (1) solver 1, who has a

higher valuation, has a higher probability of participation; (2) solver 2, who has a lower

valuation, bids more aggressively upon entering the contest (i.e., because pC2 v1 ≤ pC1 v2,

solver 2 does not bid 0, whereas solver 1 bids 0 with a positive probability).

Let us then consider the subgame in which the organizer commits to policy D. In this

case, the organizer discloses the actual number of solvers before the participating solvers

make their bids. Here, the second stage is a standard all-pay auction with complete

information. Again, solvers’ first stage strategies must be cutoff strategies. To find an

equilibrium, we only need to pin down the equilibrium cutoffs ĉD1 and ĉD2 .
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Proposition 2 (Full Disclosure). Suppose v1 ≥ v2. Consider the subgame that follows

policy D. Take the equilibrium of the second stage as given in Lemma 1. There is a

unique Bayesian Nash equilibrium in the first stage (ĉD1 , ĉ
D
2 ) = (

v1−v22
1−v22

, (1−v1)v2
1−v22

).

Under full disclosure, it is also solver 1, the stronger solver, that has a higher proba-

bility of participation.

The following main result compares the two disclosure policies in all the four perfor-

mance measures as described in the introduction.

Theorem 1 (Performance Rankings under Endogenous Entry). Consider the contest

with endogenous entry.

(i) The ex ante expected bid of each solver, as well as the ex ante expected total bid,

is higher (and strictly higher if v1 ̸= v2) under full concealment than under full

disclosure.

(ii) The ex ante expected winner’s bid is strictly higher under full concealment than

under full disclosure.

(iii) The allocation efficiency is lower (and strictly lower if v1 ̸= v2) under full conceal-

ment than under full disclosure.

(iv) The ex ante expected total payoff of the solvers is lower (and strictly lower if v1 ̸= v2)

under full concealment than under full disclosure.

In contrast to the finding for the case with exogenous entry, where the rankings of

the disclosure policies crucially depend on the solvers’ relative valuation of the prize

and information disclosure could benefit both the organizer and the solvers, Theorem 1

shows that once solvers’ entry decisions are endogenously determined by themselves full

disclosure unambiguously hurts the organizer and benefits the solvers.5 Compared to fully

concealing the information on participation, full disclosure has two effects: (1) it could

further unlevel the playing field of the two solvers and thus discourages the bidding of

both solvers; (2) it reduces the overall participation of the solvers. Though full disclosure

increases the allocation efficiency, the organizer could not benefit from it, as his ability

to extract surplus from the solvers is significantly lowered by this policy.

To give the intuition, suppose v1 > v2. Solver 1 is stronger than solver 2, and,

naturally, solver 1 has more incentive to participate than solver 2, under either disclosure

policy. The more likely solver 1 is to participate (and the more unlikely solver 2 is to

participate), the more unbalanced the contest is, which would alleviate the competition

between the two solvers. Compared to full concealment, full disclosure provides more

incentive to the strong solver (solver 1) and less incentive to the weak solver (solver

2) to participate (i.e., ĉD1 > ĉC1 and ĉD2 < ĉC2 ), which further sharpens the advantage

of the strong solver over the weak one, making the playing field even more unbalanced.

5See Proposition 4 in the Appendix for details on the case with exogenous probabilities of participa-
tion.
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Moreover, the discouragement effect of full disclosure on solver 2 is so strong that it elicits

a lower overall participation rate than under full concealment (i.e., 1− (1− ĉD1 )(1− ĉD2 ) <

1 − (1 − ĉC1 )(1 − ĉC2 )). First, the decrease in the overall participation rate seems to

decrease the overall allocation efficiency. However, this is mitigated by the gain from a

higher winning probability of the strong solver, which is so significant that it increases

the overall allocation efficiency. Second, the effects of unbalancing-the-playing-field and

decrease-in-participation together alleviate the competition and elicit less efforts from

the solvers, which increases bidders’ total payoff but decreases both the ex ante expected

total effort and ex ante expected winner’s bid.

In the following, we further examine the effects of information disclosure on solvers’

welfare. The result is summarized in the proposition below.

Proposition 3. Suppose v1 > v2. Solver 1’s (solver 2’s) ex ante expected payoff and

probability of winning are strictly lower (higher) under full concealment than under full

disclosure.

Proposition 3 compares each solver’s welfare, both in terms of the solvers’ expected

payoffs and their winning probabilities, across the two disclosure policies. Here, disclosing

“more” information about solvers’ participation decisions benefits the strong solver and

harms the weak one. The intuition is that information disclosure eliminates the weak

solver’s information rent (at the bidding stage) and sharpens the strong solver’s valuation

advantage, reducing the weak solver’s incentive to participate and increasing that of the

strong solver.

There are two implications of Proposition 3 that are worth mentioning explicitly.

First, the interest of the organizer is aligned with that of the weak solver who is at a

disadvantage, as both of them would like to attenuate the advantage of the strong solver,

but conflicts with that of the strong solver who is at an advantage. Second, in our all-pay

auction, a solver wins the prize if and only if her (realized) bid is higher than that of

her opponent. As a result, the change in a solver’s expected payoff is perfectly aligned

with the change in the solver’s winning probability in equilibrium across the information

structures.

Proposition 3 resonates the insights of Milgrom and Weber (1982) and Wärneryd

(2003) on disclosure of players’ private signals in a common-value first price auction

and a common-value contest, respectively, with one-sided private information on the

value of a prize. In our setting, the solver with a higher valuation has a valuation

advantage, and concealing the information about participation (relative to disclosing it)

would attenuate the strong solver’s advantage and elicit more effort from the solvers.

Unlike our setting, in the settings of Milgrom and Weber (1982) and Wärneryd (2003),

the player who has private information about the value of the prize is at an informational

advantage (and the one who has no private information at a disadvantage), and fully
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disclosing the private information would attenuate this player’s advantage and intensify

the competition. However, similar to our finding, both papers demonstrate that both the

organizer and the uninformed player with informational disadvantage prefer full revealing

in order to attenuate the informational advantage of the informed player, whereas the

informed player has exactly the opposite preferences.

Finally, on solvers’ winning probabilities under the two information structures, Propo-

sition 3 is parallel to the finding of Milgrom and Weber (1982), which shows that a payoff

gain (loss) of a player from information disclosure is associated with a gain (loss) in

probability of winning in their first-price auction.6

3 Conclusion

In this note, we examined the effects of disclosing the actual number of solvers in an

innovation contest with endogenous entry of two asymmetric solvers. It is shown that

the organizer prefers fully concealing the information about the number of participating

solvers to fully disclosing the information, whereas solvers prefer full disclosure to full

concealment.
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Appendix

Part A: Exogenous Entry

First, following Lemma 1, we write out the performances of the equilibrium under exoge-

nous entry below.

Corollary 1 (Performances under Exogenous Probabilities of Participation). Consider

the case in which the organizer implements policy C. Suppose that it is common knowledge

that solver 1 believes that bidder 2 participates with probability p2 and that solver 2 believes

that solver 1 participates with probability p1. Suppose pjvi ≤ pivj. In the unique Nash

equilibrium, the ex ante expected total bid is

RC(pj, pi) =
p2jvi(vi + vj)

2vj
;

the ex ante expected winner’s bid is

WC(pj, pi) =

(
pj
2
+

pjvi
2vj

−
p2jvi

3vj

)
pjvi;

the expected value realization of the prize is7

V C(pj, pi) = pi(1− pj)vi + (1− pi)pjvj + pipj

(
pjvi
pivj

· vi + vj
2

+
pivj − pjvi

pivj
· vj
)
;

the expected payoff of solver k, k = 1, 2, conditional on that she has entered is

UC
k (pj, pi) = vk − pjvi.

Second, we complete the rankings in all performance measures.

Proposition 4 (Rankings under Exogenous Probabilities of Participation). Suppose

solver 1 and solver 2 participate with probabilities p1 and p2, respectively. Suppose
pi
pj

≥ 1 :

(i) The ex ante expected revenue under full concealment is strictly higher than (the

same as) under full disclosure if and only if vi
vj

> (=)
√

pi
pj
.

(ii) There is a unique h ∈ [0, pi
pj
), with h = 0 if and only if pi = pj, such that the ex

ante expected winner’s bid under full concealment is strictly higher than (the same

as) under full disclosure if and only if vi
vj

> (=)h.

(iii) If pi
pj

> 1, the allocation efficiency under full disclosure is strictly higher than (the

same as) under full disclosure if and only if vi
vj

> (=)1. If pi
pj

= 1, the ex ante

expected winner’s bid remains the same across the two disclosure policies.

7The ex ante expected value realization of the prize is
∑2

k=1 Pr{solver k wins}vk.
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(iv) If pi
pj

> 1, the ex ante expected total payoff of the bidders under full disclosure is

strictly higher than (the same as) under full concealment if and only if vi
vj

> (=)
2pi

pi+pj
. If pi

pj
= 1, the ex ante expected winner’s bid remains the same across the two

disclosure policies.

Proof of Proposition 4.

Note that pi ≥ pj (and pipj ∈ (0, 1)).

[1] Expected Revenue Ranking under Exogenous Entry: See Fu et al. (2016).

[2] Expected Winner’s Bid Ranking under Exogenous Entry: Let s := vi
vj

and G(s) := WC(pi, pj)−WD(pi, pj). Then,

G(s) =
(

pi
2
+

pivj
2vi

− p2i vj
3vi

)
pivj −

(
vj
2
+

v2j
6vi

)
=

pivj [(pi−pj)(3vi+vj)+2pi(1−pi)vj ]

6vi
for s ≥ pi

pj(
pj
2
+

pjvi
2vj

− p2jvi

3vj

)
pjvi −

(
vj
2
+

v2j
6vi

)
=

piv
2
j [(3pj−2p2j )s

3+3pjs
2−3pis−pi]

6vi
for s ∈ [1, pi

pj
)(

pj
2
+

pjvi
2vj

− p2jvi

3vj

)
pjvi −

(
vi
2
+

v2i
6vj

)
= pjvi

[
3(pj − pi) + (3pj − 2p2j − pi)s

]
for s ∈ [0, 1).

G(·) is continuous, with G(0) < 0 and G(s) > 0 for s ≥ pi
pj
. It can be verified that G(s)

satisfies the single crossing property on [0, 1] and [1, pi
pj
). Then, if G(1) ≥ 0, there is a

x ∈ (0, 1] such that G(s) > 0 for s ∈ (x, pi
pj
], < 0 for s ∈ [0, k), and = 0 for s = k.

Similarly, if G(1) < 0, there is a x ∈ (1, pi
pj
) such that G(s) > 0 for s ∈ (x, pi

pj
], < 0 for

s ∈ [0, x), and = 0 for s = x.

[3] Allocation Efficiency Ranking under Exogenous Entry: First, suppose
vi
vj

≤ 1 ≤ pi
pj
:

V C(pi, pj)− V D(pi, pj) =

[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
pjvi
pivj

· vi + vj
2

+
pivj − pjvi

pivj
· vj
)]

−
[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
vi
vj

· vi + vj
2

+
vj − vi
vj

· vj
)]

=
pjvi(vj − vi)(pi − pj)

2vj

≥0 (= 0 iff vi = vj or pi = pj).

Second, suppose 1 < vi
vj

≤ pi
pj
:

V C(pi, pj)− V D(pi, pj) =

[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
pjvi
pivj

· vi + vj
2

+
pivj − pjvi

pivj
· vj
)]

11



−
[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
vj
vi

· vi + vj
2

+
vi − vj

vi
· vi
)]

=
pj(vi − vj)(pjv

2
i + piv

2
j − 2pivivj)

2vivj

<0,

as
pi−

√
p2i−pipj

pj
< 1 and

pi+
√

p2i−pipj

pj
> pi

pj
. Third, suppose 1 ≤ pi

pj
< vi

vj
:

V C(pi, pj)− V D(pi, pj) =

[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
pivj
pjvi

· vi + vj
2

+
pjvi − pivj

pjvi
· vi
)]

−
[
pi(1− pj)vi + (1− pi)pjvj + pipj

(
vj
vi

· vi + vj
2

+
vi − vj

vi
· vi
)]

=− pivj(vi − vj)(pi − pj)

2vi

≤0 (= 0 if pi = pj).

[4] Welfare Ranking under Exogenous Entry: First, suppose vi
vj

≤ 1 ≤ pi
pj
:

UC(pi, pj)− UD(pi, pj) =[pi(vi − pjvi) + pj(vj − pjvi)]− [pi(1− pj)vi + pj(1− pi)vj + pipj(vi − vj)]

=pj(pi − pj)vi

≥0 (= 0 if pi = pj).

Second, suppose 1 < vi
vj

≤ pi
pj
:

UC(pi, pj)− UD(pi, pj) =[pi(vi − pjvi) + pj(vj − pjvi)]− [pi(1− pj)vi + pj(1− pi)vj + pipj(vi − vj)]

=pj(pi + pj)vj

(
2pi

pi + pj
− vi

vj

)
.

Note that 2pi
pi+pj

≤ pi
pj

for pi ≥ pj. In this case UC − UD is less than 0 if vi
vj

> 2pi
pi+pj

, larger

than 0 if vi
vj

< 2pi
pi+pj

, and equals to 0 if vi
vj

= 2pi
pi+pj

. Third, suppose 1 ≤ pi
pj

< vi
vj
:

UC(pi, pj)− UD(pi, pj) =[pi(vi − pivj) + pj(vj − pivj)]− [pi(1− pj)vi + pj(1− pi)vj + pipj(vi − vj)]

=− pi(pi − pj)vj

≤0 (= 0 if pi = pj).

The above result shows that a gain in the organizer’s benefit from information disclo-

sure (or information concealment) is not necessarily associated with a gain in allocation

efficiency or a loss in the solvers’ total payoff. Note that h < pi
pj

< 2pi
pi+pj

<
√

pi
pj

as

12



long as vi
vj

̸= 1. If the solvers’ valuations are neither too similar nor too different (e.g.,

vi
vj

∈ ( 2pi
pi+pj

,
√

pi
pj
) in case that the organizer is a benevolent sponsor), full disclosure is ac-

tually a win-win policy for the organizer and the solvers, under which both the organizer

and the solvers are better off, and it also leads to a higher level of allocation efficiency.

However, if vi
vj

< 1, then at the time when full disclosure increases the benefit of the

organizer, it reduces the allocation efficiency.

Part B: Endogeous Entry

Proof of Proposition 1.

First, each solver makes her participation decision and bidding decision sequentially.

Solvers’ second stage bidding behavior follows from Lemma 1. We only need to pin down

the equilibrium probabilities of participation (or the cutoff participation costs).

Suppose pC1 v2 ≥ pC2 v1. Given that solver 1 participates with probability pC1 and

believes that solver 2 participates with probability pC2 , solver 2’s expected payoff will be

(v2 − pC2 v1)− c2

if she participates and 0 otherwise. She strictly prefers (not) taking part in the contest if

(v2−pC2 v1)−c2 > (<)0 and is indifferent between participating and not if (v2−pC2 v1)−c2 =

0. Thus, we can derive the cutoff participation cost of solver 2 can be derived as follows:

(v2 − pC2 v1)− ĉC2 = 0 ⇒ (v2 − ĉC2 v1)− ĉ2 = 0 ⇒ ĉC2 =
v2

1 + v1
.

On the other hand, given that solver 2 participates with probability pC2 and believes

that solver 1 participates with probability pC1 , solver 1’s expected payoff will be

(v1 − pC2 v1)− c1

if she participates and 0 otherwise. She strictly prefers (not) taking part in the contest if

(v1−pC2 v1)−c1 > (<)0 and is indifferent between participating and not if (v1−pC2 v1)−c1 =

0. Thus, we can derive the cutoff participation cost of solver 1 can be derived as follows:

(v1 − pC2 v1)− ĉC1 = 0 ⇒ (v1 − ĉ2v1)− ĉC1 = 0 ⇒ ĉC1 = v1 −
v1v2
1 + v1

.

Last, we show that v1 ≥ v2.

pC1 v2 ≥ pC2 v1 ⇒
[
v1 −

v1v2
1 + v1

]
v2 ≥

v2
1 + v1

· v1

⇒v1 + v21 − v1v2 ≥ v1

13



⇒v1 ≥ v2 (pC1 v2 = pC2 v1 iff v1 = v2).

Proof of Proposition 2.

Suppose v1 ≥ v2. Given that solver 2 participates with a probability of pD2 , solver 1’s

expected payoff is

[
(1− pD2 ) · v1 + pD2 · (v1 − v2)

]
− c1

if she participates and 0 otherwise. She strictly prefers (not) taking part in the contest if[
(1− pD2 ) · v1 + pD2 · (v1 − v2)

]
− c1 > (<)0. She is indifferent between participating and

not if
[
(1− pD2 ) · v1 + pD2 · (v1 − v2)

]
− c1 = 0.

Given that solver 1 participates with a probability of pD1 , solver 2’s expected payoff is

(1− pD1 ) · v2 − c2

if she participates and 0 otherwise. She strictly prefers (not) taking part in the contest if

(1−pD1 )·v2−c2 > (<)0. She is indifferent between participating and not if (1−pD1 )·v2−c2 =

0.

Thus, we can derive the cutoff participation costs of solver 1 and solver 2 can be

derived by solving the two equations and two unknowns below:

(
v1 − ĉD2 v2

)
− ĉD1 =0;

(1− ĉD1 ) · v2 − ĉD2 =0.

Hence, the cutoffs are

ĉD1 =
v1 − v22
1− v22

;

ĉD2 =
(1− v1)v2
1− v22

.

Thus, we can derive the cutoff participation cost of solver 2’ can be derived as follows:

(1− pD1 ) · v2 − ĉD2 = 0 ⇒ (1− v1
1 + v2

) · v2 − ĉD2 = 0 ⇒ ĉD2 = v2 −
v1v2
1 + v2

.

Following from Propositions 1 and 2 and Lemma 1, we state the performances of the

two disclosure policies under endogenous entry below.
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Corollary 2. Suppose v1 ≥ v2.

i. In the equilibrium under full concealment as stated in Proposition 1: The ex ante

expected total bid of the equilibrium is

RC =
v1v2(v1 + v2)

2(1 + v1)2
.

The ex ante expected winner’s bid is

WC =
v1v2(v1v2 + 3v2 + 3v21 + 3v1)

6(1 + v1)3
.

The expected value realization of the prize is

V C = ĉC1 (1− ĉC2 )v1 + (1− ĉC1 )ĉ
C
2 v2 + ĉC1 ĉ

C
2

(
ĉC2 v1
ĉC1 v2

· v1 + v2
2

+
ĉC1 v2 − ĉC2 v1

ĉC1 v2
· v2
)
.

The ex ante expected total payoff of solver k is8

UC
k =

(
ĉCk
)2

2
.

ii. In the equilibrium under full disclosure as stated in Proposition 2: The ex ante

expected total bid is

RD =
(1− v1)(v1 − v22)(v1 + v2)v

2
2

2(1− v22)
2v1

.

The ex ante expected winner’s bid is

WD =
(1− v1)(v1 − v22)(3v1 + v2)v

2
2

6(1− v22)
2v1

.

The expected value realization of the prize is

V D = ĉD1 (1− ĉD2 )v1 + (1− ĉD1 )ĉ
D
2 v2 + ĉD1 ĉ

D
2

(
v2
v1

· v1 + v2
2

+
v1 − v2

v1
· v1
)
.

The ex ante expected total payoff of solver k is

UD
k =

(
ĉDk
)2

2
.

Proof of Theorem 1.

8Under full concealment, solver k’s ex ante expected payoff is pCk · UC
k (pCj , p

C
i ) − pCi

ĉCi
2 =

(ĉCi )
2

2 , as

pCi = Ui(p
C
i , p

C
j ) = ĉCi . This is similar to the case under full disclosure.
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[i] Revenue Ranking: Suppose v1 ≥ v2. Solver 1’s ex ante expected bid under full

concealment minuses that under full disclosure is

ĉC1 · ĉ
C
2 v1
ĉC1 v2

· ĉ
C
2 v1
2

− ĉD1 ĉ
D
2 · v2

2
=
v2(v1 − v2) [v

2
2 + v1(1 + v1v2 − v22 − v2) + v21v2(1 + v2 − v22)]

2(v1 + 1)2(1− v2)2(v2 + 1)2
> 0.

Solver 2’s ex ante expected bid under full concealment minuses that under full disclosure

is

ĉC2 · ĉ
C
2 v1
2

− ĉD1 ĉ
D
2 · v2

v1
· v2
2

=
v2
v1

[
ĉC1 · ĉ

C
2 v1
ĉC1 v2

· ĉ
C
2 v1
2

− ĉD1 ĉ
D
2 · v2

2

]
> 0.

[ii] Winner’s Bid Ranking: Let

S(x) :=(v31 + 3v21)x
5 + (2v41 + v31 + 2v1 + 1)x4 − (3v51 + 6v41 + 2v31 − 3v1)x

3

+ (v51 − 4v41 − 6v31 − 2v21 − v1)x
2 + (3v61 + 6v51 − 5v31)x+ 3v41 + 3v31.

In particular, S(0) = 3(1+v1)v
3
1 > 0 and S(v1) = 2(1−v21)

2v31 > 0. It can be verified that

S(x) satisfies the single crossing property on [0, v1]. More specifically, S(x) = 0 implies

S ′(x) < 0. Hence, S(x) > 0 for all x ∈ [0, v1].

Next, the difference in expected winner’s bid across the disclosure policies is:

WC −WD =
v2

6(1 + v1)3(1− v22)
2v1

· S(v2) > 0.

[iii] Allocation Efficiency Ranking: First, let

S(x) :=(2v31 + v21 + 2v1)x
4 − (2v41 + 3v31 − v21 − v1 − 1)x3

− 4(v31 + v21 + v1)x
2 + (5v41 + 3v31 − 5v21 − v1)x+ 4v31 + 3v21.

In particular, S(0) = 4v31 + 3v21 > 0 and S(v1) = 2(1 − v1)
3(1 + v1)v

2
1 > 0. It can

be verified that S(x) satisfies the single crossing property on [0, v1]. More specifically,

S(x) = 0 implies S ′(x) < 0. Hence, S(x) > 0 for all x ∈ [0, v1].

Next, the difference in expected value realization of the prize across the disclosure

policies is:

V C − V D =

[
pCi (1− pCj )v1 + pCj (1− pCi )v2 + pCi p

C
j

(
pCi v2 − pCj v1

pCi v2
· v2 +

pCj v1

pCi v2
· v2
2

+
pCj v1

pCi v2
· v1
2

)]

−
[
pDi (1− pDj )v1 + pDj (1− pDi )v2 + pDi p

D
j

(
v1 − v2

v1
· v1 +

v2
v1

· v1
2

+
v2
v1

· v2
2

)]
=

−(v1 − v2)S(v2)v2
2(1 + v1)2(1− v22)

2v1
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≤0 (= 0 iff v1 = v2).

[iv] Welfare Ranking: First,

(ĉD1 − ĉC1 ), (ĉ
C
2 − ĉD2 ) ≥ 0 (= 0 iff v1 = v2);

(ĉC2 − ĉD2 )− (ĉD1 − ĉC1 ) = −(1− v1)(v1 − v2)v2
(1 + v1)(1 + v2)

≤ 0 (= 0 iff v1 = v2);

(ĉC2 + ĉD2 )− (ĉD1 + ĉC1 ) = −(2− v2)(v1 − v2)

1− v2
≤ 0 (= 0 iff v1 = v2),

Then, the difference in ex ante expected total payoff across the disclosure policies is:

(UC
1 + UD

2 )− (UD
1 + UD

2 ) =
1

2
(ĉC2 − ĉD2 )(ĉ

C
2 + ĉD2 )−

1

2
(ĉD1 − ĉC1 )(ĉ

C
1 + ĉD1 ) ≤ 0 (= 0 iff v1 = v2).

Proof of Proposition 3.

Solver 1’s ex ante expected payoff under full concealment minuses that under full

disclosure is(
ĉC1
)2

2
−
(
ĉD1
)2

2
=

(ĉC1 − ĉD1 )(ĉ
C
1 + ĉD1 )

2
< 0.

Solver 2’s ex ante expected payoff under full concealment minuses that under full disclo-

sure is(
ĉC2
)2

2
−
(
ĉD2
)2

2
=

(ĉC2 − ĉD2 )(ĉ
C
2 + ĉD2 )

2
> 0.

Solver 1’s probability of winning under full concealment minuses that under full dis-

closure is

ĉC1

[
ĉC2 · ĉC2 v1

2ĉC1 v2
+ (1− ĉC2 )

]
− ĉD1

[
ĉD2 ·

(
1− v2

v1
+

v2
2v1

)
+ (1− ĉD2 )

]
<ĉD1

[
ĉD2 · ĉC2 v1

2ĉC1 v2
+ (1− ĉD2 )

]
− ĉD1

[
ĉD2 ·

(
1− v2

v1
+

v2
2v1

)
+ (1− ĉD2 )

]
=− ĉD1 v2(1− v1)(1 + 2v1 − v2)(v1 − v2)

2v1(1− v2)(1 + v2)(1− v1 + v2)

<0.

Solver 2’s probability of winning under full concealment minuses that under full disclosure
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is

ĉC2

[
ĉC1 ·

(
1− ĉC2 v1

ĉC1 v2
+

ĉC2 v1
2ĉC1 v2

)
+ (1− ĉC1 )

]
− ĉD2

[
ĉD1 · v2

2v1
+ (1− ĉD1 )

]
>ĉD2

[
ĉC1 ·

(
1− ĉC2 v1

ĉC1 v2
+

ĉC2 v1
2ĉC1 v2

)
+ (1− ĉC1 )

]
− ĉD2

[
ĉD1 · v2

2v1
+ (1− ĉD1 )

]
=
ĉD2 (v1 − v2)(v1 + 2v21 + v1v2 − v22 − v1v

2
2)

2v1(1− v2)(1 + v1)(1 + v2)

>0.
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