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Abstract

Information structure can affect market efficiency by influencing participants’ investment

incentives. In this case, the entrants’ type distribution and the market trade efficiency are both

affected by the information structure, so they are jointly determined and correlated. In order

to investigate the effects of asymmetric information, this paper uses a random search model

of ex ante investments and trade efficiency, assuming that the amount of investment remains

the investor’s private information. We show that the ex-ante payoffs are equivalent to the

equilibrium payoffs when investments are observable. In the unique steady state equilibrium,

non-degenerate investment distribution and price distribution emerge simultaneously with ex

ante identical agents. The investments motivated by unobservability fail to improve social

welfare due to the mismatches caused by unobservability. Allocating positive bargaining power

to investors alleviates the mismatch problem and improves social welfare.
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1 Introduction

Participants in large markets are often heterogenous. With a large number of participants in such

a market, a participant would know better about her own characteristics than a random trading

partner would. For instance, freelancers (or independent contractors) have different costs for de-

livering certain tasks, which is their private information. Whether participants possess private

information or not has been proven to significantly affect market outcomes in the literature on Dy-

namic Matching and Bargaining Games (DMBG) without complementarities. For example, Lauer-

mann (2013) shows that trading outcomes become competitive as search frictions vanish whenever

participants’ preferences are their private information, and that such a convergence would likely

fail when preferences are observable. This result Holds in a very general class of matching-and-

bargaining games, and summarizes the importance of asymmetric information for efficiency in

such a decentralized market.

One implicit assumption in most of the literature, though, is that the entrants’ type distribu-

tion is exogenous and held fixed when comparing trading outcomes with different information

structures. In reality, entrants might invest in order to change their characteristics.1 These invest-

ments are motivated by future gains that depend crucially on the information structure. In this case,

asymmetric information could affect market outcomes through this additional channel. The overall

impacts of asymmetric information need to be re-examined.2

In order to address this issue, we investigate a random search model with ex ante identical

but ex post heterogeneous agents in which the heterogeneity arises endogenously from agents’ ex

ante investments. We explore the effects of the correlation between type distribution and trade

outcomes, and arrive at a drastically different prediction for how asymmetric information affects

market outcomes than has been seen before in the existing literature. In this paper, we show

1For example, freelancers acquire costly skills or tools (such as softwares) to lower the cost
of delivering outputs, according to the survey conducted by Upwork and the Freelancers Union
(https://www.slideshare.net/upwork/freelancing-in-america-2018-120288770/1).

2The idea that whether participants’ type distribution is endogenous or exogenous could greatly affect market
outcomes has also been noticed in earlier research. In a labor search model, Acemoglu and Shimer (1999) show that
while Hosios’ condition guarantees efficiency when firms’ productivity is exogenous, it is not sufficient for efficiency
when firms can invest to enhance productivity. Additional discussion can be found in the “Related Literature” section.
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that the ex ante payoffs are equivalent to those with observable investments, given any level of

search frictions, and that the effect of asymmetric information on trade outcomes and on investment

incentives cancel each other out.

The infinite-horizon random search model used in this paper is a typical matching-and-bargaining

game except that market participants can invest before entering. New buyer and seller entrants in

each period are identical ex ante. A buyer entrant demands one unit of output and receives utility

y0 > 0 from consumption. A seller entrant is endowed with the technology to produce one unit of

output at cost x0 ∈ (0, y0) and can lower the production cost by investing. After the investments

have been sunk, all incumbents randomly form one-buyer-to-one-seller pairs. Within each pair,

the buyer makes a take-it-or-leave-it offer without observing the seller’s investments. If the offer

is accepted, production takes place and both leave the market permanently. Otherwise, the pair is

dissolved and both search in the next period. We assume that agents are impatient and that the time

between two periods is the source of the search friction. In the model, agents are referred to as

buyers and sellers, but they may also be consumers and retailers, clients and freelancers,3 and so

on.

A key assumption in the model is that the investment is unobservable. We first show that

agents’ ex ante payoffs are equivalent to those when the investment is observable, in which case no

sellers invest. In other words, private information neither benefits the investors nor improves social

welfare. Buyers can correctly anticipate the lowest amount invested in equilibrium and hence are

able to fully extract the least efficient sellers when they make offers as if the investments were

observable. The sellers’ lowest amount of investment is therefore 0. The sellers’ ex ante payoff,

and, according to their optimal investment decision, any seller’s ex ante payoff, is equivalent to

that with observable investments. Buyers who propose the reserve price of the least efficient sellers

offer the same price and trade immediately, as in the case of observable investments. The buyers’

payoff, and according to their optimal pricing decision, any buyer’s payoff, is equivalent to that

3Our model best applies to the freelance economy when looking at jobs with straightforward goals, such as typing,
coding and data collecting. Other types of tasks, for example where a freelancer’s investments also benefit clients by
improving the quality of the output, are beyond the scope of this paper.
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with observable investments.

The ex ante payoff equivalence property stems from two opposing effects caused by unobserv-

ability. The extraction-limitation effect incentivizes sellers to invest positive amounts. Because the

investments are unobservable, a buyer who wants to extract more surplus from the paired seller’s

investment risks losing the trading opportunity when offering a lower price. This trade-off limits

the buyers’ ability to extract surplus. In equilibrium, the distribution of the production costs is

such that buyers are indifferent between offering higher prices in order to secure trade and offering

lower prices in order to extract more surplus. As a result, sellers could receive information rent

when they receive high offers, which incentivizes them to invest. The investments generate ex post

gains when trade takes place. In equilibrium, unobservability gives rise to a non-degenerate distri-

bution of production costs and a non-degenerate distribution of price offers with ex ante identical

buyers and sellers. This means that the price offer and the reserve price in a pair may be mis-

matched, resulting in no trade, despite the fact that the surplus from trading immediately is strictly

positive. The mismatch effect caused by unobservability leads to a delay in trade and a delay in the

realization of ex post gains from investments, which, in turn, completely dissipates any gain from

investments motivated by private information.

The ex ante payoff of sellers is 0 and that of buyers is y0 − x0, which are constant given any

level of search frictions. This implies that social welfare is not constraint efficient even when the

search friction vanishes. This contradicts the robust prediction in the literature on DMBG without

complementarity that the equilibrium converges to the competitive limit as search frictions vanish.

In order to solve this puzzle, we investigate how a reduction in the search friction might affect

trade efficiencies and investment incentives. We find that this would lead to a higher degree of

mismatch: buyers price more aggressively and the market accumulates more high-cost sellers.

Contrary to our result, trade becomes efficient as search frictions vanish in DMBG. This explains

the different predictions in terms of social welfare. Moreover, we also find that investments become

socially efficient as the search friction vanishes, although it does not contribute to social welfare

at all. This is due to selection in a large market: seller incumbents who have invested more are
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less likely to be mismatched, so they leave the market faster. This selection is strongest as the

search friction vanishes, which means that almost all of the seller entrants must invest the socially

efficient amount to preserve the steady state. This observation suggests that when evaluating the

efficiency of a market empirically, it is important to make use of both the data on the entrants’ type

distribution and the data on trade efficiency. Otherwise, one may wrongly conclude that a market

with almost efficient seller entrants like this one must always generate high social welfare.

We then extend the basic model to include random proposers.4 We learned three things about

allocating some bargaining power to sellers. First, the lowest amount of investment in the mixed

strategy will become strictly positive because, when sellers propose, they can claim the residual

gains from investment. Second, the ex ante payoff equivalence property continues to hold and

so it is not restricted to the knife-edge case of one-sided proposing. Third, when sellers have

a positive probability of proposing in one period, the lowest investment amounts and the social

welfare increase as the search friction is reduced. They converge to the first best level pointwise as

the friction vanishes. In the appendix, we also explore how the insights from the basic model help

us to understand similar market settings, such as markets with two-sided investments and randomly

observable investments.

Related Literature

This paper is closely related to the literature on DMBG without complementarities, as discussed

earlier. Private information plays a key role in determining the trading outcomes, as highlighted in

Satterthwaite and Shneyerov (2007), Shneyerov and Wong (2010a) and Lauermann (2012) (2013),

among others. With the additional investment stage in this paper, both the entrants’ type distri-

bution and the trading outcomes are affected by private information. This essentially introduces

a correlation between the two, which is absent in the earlier literature. We show that this corre-

lation could lead to new conclusions about the net effect of private information as well as market

efficiency as search frictions vanish.

This paper explores investment incentives, and so it is related to the literature on the hold-up

4For example, sometimes it is the freelancer who proposes the terms of the contract instead of the client.
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problem (Grout (1984), Grossman and Hart (1986), Hart and Moore (1990), Hermalin and Katz

(2009), Hermalin (2013) etc.). Models of the hold-up problem largely focus on one-to-one trade

with relationship-specific investments, while in our model, agents participate in a large market with

general investments. Despite this, we show that the sellers who invest the lowest amount are still

held up. In this thread of the literature, the most related paper is Gul (2001). He looks at a Coasian

setting (i.e., the seller makes one-sided repeated offers) where a buyer’s valuation is determined

by her investments prior to the bargaining process, which is assumed to be unobservable to the

seller. We share Gul’s conclusion that the equilibrium strategies feature double-mixing. Moreover,

the payoff equivalence property also holds in Gul’s paper when the seller only proposes once.

This one-round proposing is essentially the same as our basic model assuming β = 0. On the

other hand, the predictions on how the equilibrium changes as the environment becomes more

competitive5 differ due to different market settings (one-to-one relation v.s. a large market).

Firstly, although the investment strategy approaches efficiency in both settings, the mechanisms

behind the convergence are not the same. The investment incentives in Gul (2001) result from the

asymmetric information and the Coasian effect. In our basic model, the convergence is due to

the extreme selection of the market in the steady state as the search friction vanishes. Secondly,

there are more mismatches in our model as the search friction diminishes because the market

accumulates more high cost sellers due to selection in the market. This selection is absent in Gul

(2001) without repeated entry. Then, with the almost efficient buyer in Gul’s paper, there is almost

no delay in bargaining. Thirdly, because of the difference in the efficiency of trade, the efficient

investments motivated by information rent generate the first best welfare in Gul (2001) while they

do not contribute to the welfare at all in our basic model. In other words, our results differ from

Gul (2001) in that, in environments captured by our basic model, private information may not be

able to restore efficiency.

We are not the first paper to investigate investment incentives and trading outcomes jointly in a

dynamic environment with search frictions. A non-exhaustive list includes Masters (1998, 2011),

5Being more competitive means that the time between two rounds shrinks to zero (in Gul [2001]) and that the time
between two periods shrinks to zero (in our model).
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Smith (1999), Acemoglu (1996), Acemoglu and Shimer (1999), Charlot, Decreuse and Granier

(2005), Charlot and Decreuse (2010), Davis (2001), Kurmann (2014), Flinn and Mullins (2015)

and Jerez (2017). What we share in common is that, when participants’ types are determined

by ex ante investment rather than exogenously given, efficiency cannot be reached under usual

conditions. On the other hand, none of the above mentioned literature looks at agents with private

information. What we add to this literature is how asymmetric information affects investment

incentives, trade efficiency, and welfare.

This paper is also related to random search models with heterogeneous agents. Albrecht and

Vroman (1992) demonstrate that, when seller entrants are exogenously heterogeneous, any steady

state equilibrium must feature a non-degenerate price distribution. Our paper complements theirs

by showing that the sellers’ heterogeneity can emerge endogenously, precisely because buyers

offer diverse prices in equilibrium.

The rest of the paper is organized as follows. The model is introduced in Section 2, in which

we also characterize two benchmark specifications: that of the first best and that of observable

investments. Section 3 sets out the equilibrium conditions, derives the ex ante payoff equivalence

property, and proves the existence and uniqueness of the steady state equilibrium. The extraction-

limitation effect and the mismatch effect are explained in Section 4 while the impacts of reduced

search frictions are explored in Section 5. Section 6 considers an extension about random pro-

posers. Section 7 concludes the paper.

2 The Model and Benchmark Specifications

2.1 The Model

We consider a discrete-time, infinite-horizon random search model with ex ante investments and

exogenous entry. Throughout this paper, we will focus on the steady state equilibrium and omit

the time index.

7



At the beginning of each period, a unit measure of buyers and a unit measure of sellers enter the

market. Each buyer demands one unit of the product and enjoys utility y0 > 0 from consumption.

Each seller entrant is endowed with the technology that produces one unit of output at a cost

x0 > 0. We focus on the “gap” case throughout this paper, i.e., when the (minimum) surplus from

trade y0 − x0 is strictly positive.6

Before entering the market, a seller can invest c(x) to lower the production cost to x ≥ 0 once

and for all, where the function c : [0, x0] → R is strictly decreasing, continuously differentiable,

strictly convex with c(x0) = c′(x0) = 0, and c′(0) < −1.7 We will call this seller a type x seller,

although all sellers start out identical. Entrants then join the agents who stayed from the last period

and together they form the incumbents of the current period. All incumbents form one-buyer-

to-one-seller pairs randomly.8 The buyer in each pair makes a take-it-or-leave-it offer p and the

seller decides whether to accept it. We assume that buyers have no information about investments

when making price offers, which is crucial to the results. Buyers only know the probability that an

incumbent seller has a type weakly smaller than x, which is denoted as F (x). We also call F the

CDF of the stationary cost distribution. In addition, the matching is anonymous.

If the offer is accepted, then one unit of output is produced and sold, which leaves the seller

payoff p−x and the buyer payoff y0− p. Both agents exit the market permanently. Otherwise, the

pair is dissolved and both agents will search in the next period. The time between two successive

periods is t. We assume that all agents are impatient and share the same discount rate r. The

discount factor is β = e−rt ∈ [0, 1). We refer to the search friction as small if t is small or,

equivalently, if β is large.

A seller’s strategy consists, first, of an investment strategy governed by a CDF Fe, where Fe(x)

6In the online appendix, we show that the market is inactive in equilibrium with the “no-gap” case, i.e., when
y0 − x0 ≤ 0.

7Assume that c′(x0) = 0 and c′(0) < −1 are simplifications without loss of generality. As will become clear
later, the assumption c′(x0) = 0 ensures that zero measure of sellers will make no investment, and the assumption
c′(0) < −1 implies that the socially optimal investment amount (defined later) is interior. The main conclusions of
this paper, including the ex ante payoff equivalence property, are robust to alternative assumptions.

8With bilateral trading and equal measures of buyer- and seller-entrants, the two sides of the market are of equal
size. Then all incumbents forming one-buyer-to-one-seller pairs is feasible. The alternative assumption of a proba-
bilistic matching function, as is often adopted in the literature, would not change the results qualitatively.
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equals the probability that he9 invests weakly more than c(x).10 Secondly, it consists of a reserve

price function rS , where rS(x) equals the lowest price that a type x seller is willing to accept.

A buyer decides what price to offer, which is governed by a function H , where H(p) equals the

probability of offering a price strictly lower than p.

2.2 Two Benchmark Specifications

Benchmark Case 1: the Planner’s Solution

We first characterize the efficient allocation, which consists of both efficient investment and

efficient trading. At the search stage of each period, a social planner would find it optimal to

always conduct trade given any cost distribution, as the surplus from trade is always positive and

postponing trading is costly due to discounting. Given that trades take place immediately, investing

c(x) increases the social surplus by x0 − x. A social planner therefore chooses x∗ ∈ (0, x0)

implicitly defined by c′(x∗) = −1 to equate the marginal cost with the marginal benefit of the

investments. The social welfare generated from the planner’s solution is denoted as s∗ and s∗ =

y0 − x∗ − c(x∗).

Benchmark Case 2: Observable Investments

Assume that investments are observable to buyers. By comparing the basic model with this

benchmark case, we would like to identify the effects of private information on the investment

incentives, trade efficiencies, payoffs and social welfare.

The buyers have all of the bargaining power. Following the same logic as in Diamond (1971), a

seller receives a search stage payoff of zero regardless of his production cost. Because buyers can

observe the seller’s production cost, the paired buyer and buyers in all future matches offer exactly

the seller’s production cost plus the discounted continuation payoff, which drives the continuation

payoff down to zero with infinitely repeated discounting and β being smaller than 1. Therefore, the

equilibrium is unique with no sellers investing, all buyers offering price x0, and no delay in trade.
9We refer to a seller as “he” and a buyer as “she”.

10Here, we put no restriction on Fe. For example, the support of Fe can be degenerate. However, as will become
clear later, the investment strategy indeed has a non-degenerate support. The same applies to H as defined later.
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The holdup problem remains, although the investment is not relationship-specific in this large

market. We will contrast this equilibrium of no investment and no delay with the equilibrium of

positive investment and positive delay in the basic model when investments become unobservable.

In this benchmark case, a seller’s ex ante payoff, denoted as v, is zero, and a buyer’s ex ante

payoff, denoted as π, is y0 − x0. Social welfare is defined as the sum of the buyer’s and the seller’s

ex ante payoff, which equals y0 − x0 ≡ s0.

3 The Steady State Equilibrium

Let us now solve for the steady state equilibrium in the decentralized market.

3.1 Equilibrium Conditions

The Seller Incumbent’s Problem A type x seller-incumbent chooses the reserve price rS(x) to

maximize the search stage payoff U(x). The domain of the function U and rS is the same as the

support of F . Given the price offer function H , the seller’s trading probability is 1 − H(rS(x)),

which is decreasing in rS(x). The maximization problem of a type x seller is:

U(x) = max
r

{(E(p | p ≥ r)− x)(1−H(r)) +H(r)βU(x)}. (1)

Solving the above problem, the reserve price rS(x) should exactly cover the opportunity cost

of trading, i.e., the production cost x plus the discounted continuation payoff:

rS(x) = x+ βU(x). (2)

Lemma 1. In any steady state equilibrium,

1. the payoff function U is strictly decreasing and continuous in x and the reserve price function

rS is strictly increasing and continuous in x;
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2. the payoff function U is linear over an interval [x1, x2] if no buyer offers any price strictly

between rS(x
1) and rS(x

2), i.e., H(rS(x
2))−H(rS(x

1))− Pr(p = rS(x
1)) = 0.

Unless otherwise mentioned, all of the proofs are gathered in Appendix B. A more efficient

seller should have a higher search stage payoff because his production cost is lower, and should

have a lower reserve price because the opportunity cost for trading is lower. We also see from the

second part of the lemma that the shape of U depends on H . The direct benefit of the investments

on information rent is linear because the production cost is reduced linearly. Therefore, U can be

strictly convex over an interval [x1, x2] only if the type x1 seller also benefits indirectly from his

higher investments through the increased probability of receiving information rent. This probabil-

ity is higher if the type x1 seller is more likely to get an offer strictly that is higher than his reserve

price, which amounts to some buyers proposing prices strictly between rS(x
1) and rS(x

2).

Because sellers are identical ex ante, any x on the support of Fe should yield the same ex ante

payoff v, which is computed as U(x) − c(x) for x. That is, the following indifference condition

should hold:

U(x)− c(x) = v for any x on the support of Fe, and (3)

U(x)− c(x) ≤ v for any x not on the support of Fe.

The Buyer’s Problem A buyer chooses what price to offer. Define function x̂ as the inverse

function of rS , where a seller with a production cost higher than x̂(p) would reject price p. Lemma

1 implies that x̂ is well defined, continuous and strictly increasing over the relevant range. For a

given F , a buyer offering p trades with probability F (x̂(p)) in each period. Then the equilibrium

payoff of a buyer equals

π = max
p

{(y0 − p)F (x̂(p)) + (1− F (x̂(p)))βπ}. (4)

In equilibrium, F must be such that it makes a buyer indifferent to any p on the support of H .
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In other words,

(y0 − p)F (x̂(p)) + (1− F (x̂(p)))βπ = π for any p on the support of H , and (5)

(y0 − p)F (x̂(p)) + (1− F (x̂(p)))βπ ≤ π for any p not on the support of H.

The Seller’s Investment Strategy The last piece of the equations is the distribution of the seller

entrants’ production cost, which is also the sellers’ investment strategy.11 In a steady state equi-

librium, the measure of outflow of any type must equal the measure of inflow of the same type

to preserve the stationary distribution over time. A type x seller leaves the market if he receives

an offer weakly higher than rS(x), which happens with probability 1 − H(rS(x)). Meanwhile,

the measure of entrants with a cost lower than x is Fe(x). Denote the lowest production cost on

the support as x and the highest as x̄. The steady state equilibrium requires that, for any x on the

support,

Fe(x) =
F (x)−

∫ x

x
H(rS(x̃))dF (x̃)

1−
∫ x̄

x
H(rS(x̃))dF (x̃)

. (6)

We summarize the above description with a definition of the steady state equilibrium.

Definition 1. A steady state equilibrium consists of {U, v, π, rS, x̂, Fe, F,H}, such that

1. function U is defined in (1) given H and v is computed in (3);

2. function rS is defined in (2) and x̂(p) = r−1
S (p) for any p on the support of H;

3. buyer’s payoff π is defined in (4) given F and x̂;

4. the indifference conditions (3) and (5) are satisfied; and

5. equation (6) holds for any x on the support of F .
11As there is a continuum of entrants, we obtain the equivalence between the distribution of entrants’ costs and the

investment strategy when we abuse the law of large numbers as usual.
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3.2 Ex Ante Payoff Equivalence

When investments are observable, we have shown that any gains from investments are fully ex-

tracted by buyers. Consequently, sellers do not invest and the equilibrium outcomes are inefficient.

When investments are unobservable, it is not surprising to find that investments become more ef-

ficient as shown in our later analysis, because sellers gain information rent. However, it turns out

that the ex ante payoffs of buyers and sellers, as well as the social welfare, are all the same as in

the observable benchmark case. This contradicts the prediction in both the DMBG and the holdup

literature (such as Lauermann [2013] and Gul [2001]) that different information structures generate

different welfare outcomes.

To see why this is the case, notice that, although an individual seller’s production cost is unob-

servable, buyers know, in equilibrium, that the highest production cost is x̄. The highest price they

propose is therefore rS(x̄). Then a type x̄ seller is either fully extracted, earning no information

rent, or unable to trade when offered lower prices. Unobservability does not raise the search stage

payoff for the least efficient sellers in the market; it continues to be zero. Those sellers would

invest zero and the holdup problem would remain.

Lemma 2. In any steady state equilibrium with unobservable investments, U(x̄) = 0, x̄ = x0 and

rS(x̄) = x0.

The result of this lemma means that the ex ante payoff of all sellers can be computed as

v = U(x0) − c(x0) = 0 based on the indifference condition (3). In other words, though pri-

vate information gives rise to positive ex post information rent, it does not add to the seller’s ex

ante payoff. This result depends little on the details of the model except that the investment com-

pletely determines the ex post production cost12 and that the buyers have all the bargaining power.

For instance, the argument does not depend on the shape of the investment cost function.13

For buyers, those who offer the highest reserve price rS(x̄) trade without delay, and gain payoff

π = y0 − rS(x̄) = y0 − x0. Based on indifference condition (5), this is the equilibrium payoff of
12This assumption is also used in Gul (2001).
13Even the standard assumptions imposed on function c earlier are not necessary for this particular result, except

that it should be non-negative.
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all buyers regardless of the prices they are offering. The payoffs are equivalent in the observable

and unobservable cases.

Proposition 1. (Ex Ante Payoff Equivalence) In any steady state equilibrium with unobservable

investments, v = 0 and s = π = s0 for any β ∈ [0, 1). These payoffs are equivalent to the ex ante

payoffs with observable investments.

In Section 6, we will show how the ex ante payoff equivalence property extends to cases where

sellers have a positive probability of proposing, although their ex ante payoff may be positive.

Next, we characterize the equilibrium F , Fe and H in support of this property.

3.3 the Steady State Distributions

Let us first illustrate the dynamics of a steady state equilibrium. In any period, the stationary cost

distribution F is such that it keeps buyers indifferent. The seller’s reserve price rS , the buyer’s

pricing strategy H , and F jointly determine the cost distribution of those who trade and exit. At

the beginning of the next period, based on the sellers’ indifference condition, the new generation of

seller entrants will choose the investment strategy Fe so that they exactly replace those who exited.

This way, the stationary cost distribution is preserved over time. Now, we can show the following.

Lemma 3. In any steady state equilibrium, the price function H , the seller’s investment strategy

Fe and the stationary cost distribution F have the following properties:

1. F and Fe have support [x∗, x0], and they are continuous on the support with F (x∗) > 0 and

Fe(x
∗) > 0;

2. H has support [rS(x∗), rS(x0)] = [x∗ + βc(x∗), x0] and is continuous on the support.

Although all agents are identical ex ante, lemma 3 shows that sellers have different production

costs and buyers offer diverse prices after entering the market. This equilibrium feature stems from

the assumption that sellers have private information on their production costs. We have already

established that x0 is on the support of F and Fe. If all sellers invest zero in an equilibrium, then
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buyers would optimally offer p = x0. Anticipating this, a seller entrant could invest c(x∗) without

being detected and reap all the gains from the investment. So the support of F and Fe must be

non-degenerate, which means that at least some sellers make positive investments.

The sellers’ investment strategy has an interval support. To see this, consider any two points

x1 < x2 on the support of Fe. The indifference condition and the strict convexity of c(x) imply that

U(x) cannot be linear over the interval of [x1, x2]. By the second part of Lemma 1, some buyers

should be offering prices strictly between rS(x
1) and rS(x

2). Denote one of the offered prices as

rS(x
m). Buyers trade off between price and trading probability. They are willing to offer rS(xm),

which is higher than rS(x
1), only if they are compensated with a higher buying probability, which

means that xm must be on the support. Repeating this argument, F , Fe and H all have interval

supports.

In equilibrium, the most efficient sellers invest c(x∗) because, being the most efficient sellers,

they will accept any price offered in the market and trade immediately after entry. The marginal

benefit of investment thus equals 1, and they invest efficiently. In addition, there is a strictly

positive measure of type x∗ sellers because a buyer who offers rS(x
∗) can only trade with them,

though they must get a strictly positive equilibrium payoff. Moreover, there is no other mass point

on the support of F and Fe because any such point would lead to a jump in the buyer’s payoff in

the search stage, thus contradicting the buyer’s indifference condition.

On the other side of the market, buyers offer a continuum of prices with no mass point. The

fact that no single price is offered by a strictly positive measure of buyers follows from the seller’s

indifference condition. Any such price would result in a jump in the probability of selling, which

in turn leads to a kink in the function U .14

The preceding arguments hold even when β = 0, in which case the buyer in each pair is a

monopsonist. The monopsonist uses a mixed pricing strategy because the supply function, which

is endogenously determined here, is unitary elastic at any price on the support in the steady state.

14We base our reasoning on the assumptions about the investment cost function c, such as the continuous differen-
tiability and the strict convexity. For a less well-behaved c, a similar argument can be used to derive the supports of the
equilibrium strategies, and H may be flat in some regions or discontinuous at some points. For example, if c′(x0) < 0,
then H(x0) = Pr(p < x0) < 1 and H(x0 + ε) = 1 for any ε > 0.
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After establishing the supports, we can solve H and F from the indifference conditions and

solve Fe from the steady state condition. The envelope condition reads,

U ′(x) = −(1−H(rS(x))) +H(rS(x))βU
′(x).

The indifference condition U ′(x) = c′(x) solves the function H:

H(p) =


0, if p ∈ (−∞, x∗ + βc(x∗)),

1+c′(x̂(p))
1+βc′(x̂(p))

, if p ∈ [x∗ + βc(x∗), x0],

1, if p ∈ (x0,+∞).

(7)

Next, we already know from Proposition 1 that π = y0 − x0. Any other price on the support

must yield the same expected profit. In other words,

(y0 − p)F (x̂(p)) + [1− F (x̂(p))]β(y0 − x0) = y0 − x0.

Then, the stationary cost distribution F can be calculated as follows:

F (x) =


0, if x ∈ (−∞, x∗),

(1−β)(y0−x0)
y0−β(y0−x0)−x−βc(x)

, if x ∈ [x∗, x0],

1, if x ∈ (x0,+∞).

(8)

Finally, when we plug in the unique F and H into (6), the investment strategy Fe is uniquely

determined. The above discussion is summarized in proposition 2. The proof is omitted in order

to avoid repetition.

Proposition 2. There is a unique steady state equilibrium with unobservable investments. In this

equilibrium, sellers’ reserve price strategy satisfies rS(x) = x + βc(x), H is given by (7), F is

given by (8) and Fe is given by (6).
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4 The Effects of Unobservability

The unique equilibrium solved in the previous section shows that the seller’s investment decision

and the buyer’s pricing strategy are different from those with observable investments, despite the

fact that the payoffs are ex ante equivalent. To disentangle these results, we explore the effects of

unobservability.

4.1 The Extraction-limitation Effect

Because a buyer cannot observe the paired seller’s production cost, she would have to lower the

price at the cost of a reduced trading probability if she wants to extract more surplus from the

paired seller’s investment. This trade-off limits the buyer’s ability to extract surplus. We call this

the extraction-limitation effect of unobservability. In equilibrium, the production cost distribution

is such that ex ante identical buyers facing this trade-off are indifferent to whether they extract

more or less surplus. This means that sellers (other than the least efficient ones) gain information

rent when they receive high price offers, which incentivizes them to invest. Compared to the

benchmark case of observable investments, these investments contribute to higher ex post surplus

when trade takes place.

4.2 The Mismatch Effect

Sellers in the market have heterogeneous production costs. But because the types are acquired

costly, the net gain from trading immediately, which equals y0 − x− βπ− βU(x), must be strictly

positive for any x.15 Otherwise, a seller with a type x < x0 could never trade and would not have

invested c(x) > 0 to begin with. This property does not hold, in general, with heterogeneous

agents when their types are exogenously given.

The fact that the net gain from trading immediately is always strictly positive means that if the

15To see this mathematically, notice that the net gain from trading immediately is y0 − x − βπ − βU(x) = y0 −
β(y0 − x0) − rS(x) and rS(x) ≤ x0. Then the net gain from trading immediately is larger than (1 − β)(y0 − x0),
which is strictly positive.
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buyer could know the production cost of the paired seller, the two parties could always agree on a

price and trade immediately. In this case, the gain from investments could be realized without any

delay.

However, in the unique equilibrium with unobservable investments, both the distribution of

production costs and the distribution of price offers are non-degenerate. Then, with a positive

probability, a seller of a high production cost is mismatched with a buyer proposing a low price,

leading to no trade, despite the fact that the net gain from trading immediately is strictly positive.

To be more precise, the degree of mismatch, defined as the seller incumbents’ average probability

of mismatch, is measured by
∫
H(rS(x))dF (x). The degree of mismatch is strictly positive fol-

lowing Proposition 2. We call this the mismatch effect of unobservability. The mismatches cause

delay in trade and erode the surplus that could be realized ex ante.

4.3 More Investments Generate No Additional Gain

The two effects of unobservability work against each other, then combine to rationalize the ex ante

payoff equivalence property. Any ex post gain from investments fueled by the extraction-limitation

effect is completely dissipated by the delay in trade caused by the mismatch effect.

A natural implication of this result is that alleviating the mismatch problem would restore some

gains from investments. In Appendix A, we demonstrate how making the investments observable

with some probability would achieve this goal and discuss related policy implications.

5 The Effects of Reducing Search Frictions

According to Proposition 1, the payoffs and the social welfare achieved in equilibrium are inde-

pendent of β. That is, the level of search frictions has no impact on the welfare. This seems to

contradict the robust prediction in the literature on DMBG with private information that the equi-

librium outcomes become efficient as search frictions vanish. The key is that the seller entrants’

type distribution is endogenous in our model, which is correlated with the trading outcomes. In
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this section, we examine how the trading outcomes and the entrants’ type distribution change as

we reduce the level of search frictions.

5.1 A higher degree of Mismatch

First, reducing the search friction results in a more aggressive price distribution. Recall that the

search friction takes the form of waiting time between two meetings. As meetings become more

frequent, any seller with a cost x ∈ (x∗, x0) has a higher chance of trading and collecting infor-

mation rent per unit of time for a given price distribution, which leads to a marginal benefit of

investments higher than c′(x). To maintain the seller’s indifference condition – that is, to discour-

age sellers from investing only large amounts – the probability of a seller receiving information

rent per meeting should be reduced. That is, buyers must price more aggressively in the sense that

a smaller proportion of them propose above any given type’s reserve price, the probability of which

equals 1−H(rS(x)) =
−c′(x)(1−β)
1+βc′(x)

. Indeed,

∂(1−H(rS(x)))

∂β
=

(1 + c′(x))c′(x)

(1 + βc′(x))2
< 0, for any x ∈ (x∗, x0). (9)

As the search friction vanishes, any positive probability of trade per period amounts to the marginal

benefit of investment being 1. In order to keep sellers indifferent, buyers must price extremely ag-

gressively in the sense that almost all of them must offer prices in an arbitrarily small neighborhood

of the lowest reserve price limβ→1 rS(x
∗) = x∗ + c(x∗). Indeed, 1 −H(rS(x)) converges to zero

as β goes to 1 for any x ∈ (x∗, x0).

Second, the stationary cost distribution will concentrate more on high production costs. As

meetings become more frequent, any buyer offering a reserve price of a given type is more likely

to trade within a unit of time and would strictly prefer to offer lower prices for a given stationary

cost distribution. To discourage buyers from offering only low prices, the probability of them

meeting low-cost sellers should be reduced. That is, the probability F (x) should be decreasing in

β for any x ∈ [x∗, x0). An F with a larger β has first order stochastic dominance over an F with a
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smaller β. Indeed,

∂F (x)

∂β
=

(y0 − x0)(x− x0 + c(x))

[y0 − βπ − x− βc(x)]2
< 0, for any x ∈ [x∗, x0). (10)

As the time between two meetings shrinks to zero, any strictly positive probability of meeting a

seller with x < x0 means that a buyer can meet such a seller almost immediately after entry. For a

buyer to be willing to propose x0, F (x) must converge to 0 for any x ∈ [x∗, x0) as β converges to

1, which can be verified by (8). That is, sellers who invested zero ex ante comprises almost all the

incumbents.

The way F and H change in β implies that a smaller search friction is associated with a higher

degree of mismatch.

Corollary 1. The degree of mismatch, which is measured by
∫
H(rS(x))dF (x), strictly increases

in β and converges to 1 as β converges to 1.

This higher degree of mismatch explains why the equilibrium fails to converge to the first best

allocation. This prediction is drastically different from what has been found in the earlier literature

on DMBG. They found that trade becomes efficient when entrants’ types are exogenous. That is,

any trade with a positive gain takes place without any delay, which amounts to all buyers offering

rS(x0) with no mismatch in the context of our model.

5.2 Entrants Invest Efficiently

In the steady state, the cost distribution of entrants is the same as that of those who exited, which

preserves the stationary cost distribution. We show that, as the search friction vanishes, the invest-

ments become efficient, i.e., Fe converges to a point mass at x∗, despite the fact that F converges

to a point mass at the other end point, x0.

In the market, seller incumbents are selected through trade as a result of the mismatch effect.

The more a seller invests, the lower his reserve price is, as shown in Lemma 1, and the faster he

trades and exits the market. This selection results in a less efficient stock of seller incumbents than

20



Figure 1: Seller’s Investment Strategy
(In this example: x0 = 1.5, c(x) = 1

2
(x− x0)

2, y0 = 2.2.)

entrants. To be more precise, F has first order stochastic dominance over Fe.16 This selection is

more prominent when buyers price more aggressively as the search friction diminishes. When the

search friction vanishes, almost all underinvested incumbents (with x > x∗) have production costs

arbitrarily close to x0, whose probability of trade is arbitrarily close to 0, while that of the efficient

sellers is always 1. This extreme selection implies that almost all exits are efficient sellers. We

show that the fraction of underinvested exits converges to zero in the limit, despite the fact that

the fraction of underinvested incumbents converges to 1. This is because their trading probability

converges to zero. In other words, the effect of the extreme selection dominates and almost all

entrants invest efficiently to replace those who have exited.

In addition, the effect of selection seems to dominate for a wide range of search frictions, as

suggested by numerical examples. The vertical intercepts of the CDF curves in Figure 1 show that

Fe(x
∗) increases in β.

16F has first order stochastic dominance over Fe if Fe(x) − F (x) ≥ 0 for any x ∈ [x∗, x0], with strict inequality
for some x. We can calculate

Fe(x)− F (x) =
F (x)−

∫ x

x∗ H(rS(x̃))dF (x̃)

1−
∫ x0

x∗ H(rS(x̃))dF (x̃)
− F (x)

= F (x)

∫ x0

x∗ H(rS(x̃))dF (x̃)−
∫ x

x∗ H(rS(x̃))d
F (x̃)
F (x)

1−
∫ x0

x∗ H(rS(x̃))dF (x̃)
.

By the monotonicity of rS , Fe(x)− F (x) ≥ 0 for any x ∈ [x∗, x0] and the inequality is strict except for x = x0.
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It is worthwhile to compare the current limiting result of efficient investments with no welfare

gain with the limiting case in Gul (2001) where both investments and welfare become efficient.

The key difference is that Gul (2001) studies a one-to-one relationship with no repeated entry

where the selection through trade is absent. Then, when investments become efficient as the time

between consecutive periods shrinks, the non-investing party trades almost immediately and fully

extracts the surplus. A buyer in a large market, however, meets incumbents who are much less

efficient than entrants due to this selection. To extract the surplus, a buyer expects to suffer a long

spell of no trade.

We summarize the comparative statics and the limiting results in this section.

Proposition 3. As β increases, in the unique steady state equilibrium,

1. H(rS(x)) strictly increases for any x ∈ (x∗, x0), and the distribution of price offers con-

verges in distribution to a point mass at limβ→1 rS(x
∗) = x∗ + c(x∗) as β → 1;

2. F (x) strictly decreases for any x ∈ [x∗, x0), and converges in distribution to a point mass at

x0 as β → 1.

Moreover, Fe(x) converges in distribution to a point mass at x∗ as β → 1.

Proposition 3 suggests that, when estimating the efficiency of a market, both the data on the

entrants’ type distribution and the data on the trade efficiency are necessary. Imagine we are

comparing two markets like the one studied here, with one having a larger search friction than the

other. Based on the entrant’s production costs alone, we may conclude that the market with a larger

proportion of efficient entrants generates a higher welfare. However, this estimation neglects the

interdependency of the investment strategy and trade efficiency. In fact, we have shown that there

is also a higher degree of mismatch in this market and that the two markets yield the same amount

of welfare.

In the next section, we extend the basic model and assume that sellers make offers with some

probability in each meeting. We show that the two main conclusions of the basic model continue

to hold. First, the agents’ payoff as well as social welfare are independent of whether investments
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are observable or not. Second, the delay in trade caused by mismatch dissipates all ex post gains

from any investments above the lowest investment level.

6 Random Proposers

In reality, sellers (the investing party) often also have the opportunity to make an offer. For instance,

we can easily find job-wanted posts on job matching platforms initiated by freelancers that specify

their desired salaries. In order to model how this affects the incentives of ex ante investments and

trading outcomes, we assume that nature randomly and independently selects the seller to be the

proposer with a probability of α ∈ (0, 1) and selects the buyer with the complementary probability

in each pair.

6.1 Benchmark Case: Observable Investments

To figure out the effects of unobservability, let us first characterize the steady state equilibrium

when investments are observable. When the seller in a pair makes an offer, he optimally proposes

the buyer’s reserve price rB = y0 − βπ if rB − x is larger than his discounted continuation payoff

βU(x), and proposes a higher price otherwise, which leads to no trade. When the buyer in the pair

makes an offer, she optimally proposes rS(x) = x + βU(x) if y0 − x − βU(x) is larger than βπ,

and proposes a lower price otherwise, which leads to no trade. Then, trade takes place if and only

if the net gain from trading immediately y0 − x − βπ − βU(x) is weakly positive, regardless of

who is proposing.

Based on this proposing strategy, the seller’s search stage payoff is

U(x) = αmax{y0 − βπ − x, βU(x)}+ (1− α)βU(x)

=

 0 for x > y0 − βπ,

α(y0−βπ−x)
1−β(1−α)

for x ≤ y0 − βπ.
(11)
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and the seller chooses x to maximize the ex ante payoff

v = max
x≤x0

{U(x)− c(x)}. (12)

We can tell from (11) that any seller who trades must have an x lower than y0 − βπ, in which

region U(x) − c(x) is strictly concave. Then all sellers who trade must have the same production

cost, denoted as x̄, which is uniquely determined by

c′(x̄) =
−α

1− β(1− α)
. (13)

Because α > 0, x̄ is strictly lower than x0.

There are two possible types of equilibrium. In one type of equilibrium, which we name the

Active Equilibrium, all seller entrants strictly prefer to invest c(x̄) and they all trade immediately

after entry. In the other type of equilibrium, which we name the Partial-Active Equilibrium, there

are also incumbent sellers who have invested zero and never trade. Seller entrants, being indifferent

between investing c(x̄) and 0, all invest c(x̄), which preserves the steady state distribution.

Accordingly, the buyer’s payoff equals

π = αβπ + (1− α)[F (x̄)(y0 − x̄− βU(x̄)) + (1− F (x̄))βπ]. (14)

Lemma 4. With random proposers and observable investments, the steady state equilibrium exists

and is unique, in which all of the seller entrants invest c(x̄), which is uniquely defined by (13), and

trade immediately after entry.

1. When α(y0 − x̄) ≥ c(x̄), the Active Equilibrium holds, in which F (x̄) = 1 and all agents

trade immediately after entry. In equilibrium, v = α(y0 − x̄) − c(x̄), π = (1 − α)(y0 − x̄)

and s = y0 − x̄− c(x̄).

2. When α(y0− x̄) < c(x̄), the Partial-Active Equilibrium holds, in which F (x) = α(y0−x̄)
β(1−α)c(x̄)

−
1−β(1−α)
β(1−α)

< 1 for any x ∈ [x̄, x0), F (x0) = 1 and type x0 seller incumbents never trade. In
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equilibrium, v = 0 and π = s = α(y0−x̄)−(1+αβ−β)c(x̄)
αβ

.

In order to see that the two types of equilibrium indeed exist with the right parameters, consider

the following example, where c(x) = x2− 2x+1, x0 = 1, α = 0.1 and β = 0.9.17 The production

cost x̄ equals 1 − 1
3.8

according to (13). Then the condition α(y0 − x̄) ≥ c(x̄) is equivalent to

y0 ≥ 10× (1− 1
3.8

)2− 19× (1− 1
3.8

)+10 ≈ 1.429. Therefore, the Active Equilibrium holds when

y0 > 1.43 and the Partial-Active Equilibrium holds when y0 ∈ (1, 1.42).

The dynamics of the Partial-Active Equilibrium need further clarification. When α(y0 − x̄) <

c(x̄) holds, a type x̄ seller would earn a negative ex ante payoff if buyers were to trade with no

delay and consequently have a low reserve price rB. Then, in order to incentivize investment,

there must be some type x0 incumbents who entered in the past and could never trade, causing a

delay for buyers.18 The measure of type x0 incumbents is such that it causes just enough delay and

lowers π by just the right amount to make seller entrants indifferent between investing c(x̄) and 0.

6.2 The Steady State Equilibrium

Let us now turn to the steady state equilibrium with unobservable investments. The seller’s search

stage payoff is19

U(x) =

 0 for x > y0 − βπ,

α(y0−βπ−x)+(1−α)
∫
rS(x)(p−x)dH(p)

1−β(1−α)H(rS(x))
for x ≤ y0 − βπ.

and the ex ante payoff equals

v = max
x≤x0

{U(x)− c(x)}.

17We can verify that function c satisfies all the regularity conditions assumed.
18Before reaching the steady state, seller entrants randomize between investing c(x̄) and zero, and the non-investing

sellers never trade and stay in the market. When the market accumulates enough type x0 sellers, the economy reaches
the steady state and all of the entrants invest c(x̄).

19We can show in a similar way that a seller never trades if the net gain from trading immediately is negative.
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Then following the same logic as in the case of observable investments, with any x on the support

of Fe, the net gain from trading immediately is positive.

The highest production cost on the support of Fe, although unobservable, is known in the

equilibrium. Here, this seller with the highest production cost is either fully extracted or unable to

trade when the buyer in the pair proposes. Hence his search stage payoff will be the same as in

(11) when investments are observable. The payoff of a buyer who offers this seller’s reservation

price will be the same as in (14) when investments are observable. Therefore, the upper bound of

the support of Fe is still x̄, and F (x̄) coincides with the observable benchmark. The ex ante payoff

equivalence property in the basic model continues to hold regardless of the investors’ bargaining

power.

Proposition 4. (Ex Ante Payoff Equivalence) In the steady state equilibrium with random pro-

posers and unobservable investments, the buyers’ and sellers’ ex ante payoffs coincide with the

payoffs in the observable benchmark.

Moreover, following the same logic as in the basic model, both the sellers and the buyers

are using mixed strategies. The CDF Fe and H are continuous and have support [x∗, x̄] and

[rS(x
∗), rS(x̄)], respectively, with Fe(x

∗) > 0. Combined with the payoff equivalence result,

this means that, although all entrants invest more than c(x̄), any extra investment beyond c(x̄) does

not contribute to anyone’s ex ante payoff. Like in the basic model, this zero-gain result stems from

the extraction-limitation effect and the mismatch effect working against each other. We elaborate

below.

A seller’s investment can be decomposed into two parts, c(x̄) and beyond, according to the

source of incentives. He is willing to invest c(x̄) because he proposes in each meeting with prob-

ability α. In the basic model, this part of the investment is zero because α = 0. His investment

beyond c(x̄) is induced by the extraction-limitation effect. On the other hand, the double-mixing

strategy means that the mismatch effect continues to play a role as long as α < 1 and β < 1: when

the buyer in a pair proposes with probability 1 − α, there is a strictly positive probability that the

proposed price will be lower than (i.e., mismatches with) the reserve price of the seller, although
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the net gain from trading immediately will be strictly positive. Then the no-gain property in the

basic model is extended: any investment fueled by the extraction-limitation effect (those beyond

c(x̄)) adds no ex ante gain due to the mismatch effect.

To summarize, the payoff equivalence and the no-gain property are not knife-edge results which

only hold when sellers have no bargaining power. Instead, the two properties hold independent of

the bargaining power allocation.

6.3 The Effects of Reducing Search Frictions

In this section, we investigate the effects of reducing search frictions. To highlight the fact that x̄

and s depend on α and β, we use x̄(α, β) and s(α, β) to denote the two.

Corollary 2. In the steady state equilibrium with random proposers and unobservable investments,

when α > 0, as β increases, x̄(α, β) decreases and converges pointwise (but not uniformly) to x∗,

s(α, β) increases and converges pointwise (but not uniformly20) to s∗.

We know that the lowest investment amount c(x̄) is motivated by the opportunity to propose.

A seller proposes in each meeting with a positive probability. As meetings arise more frequently,

sellers are more likely to propose within a unit of time, which motivates them to invest more.

Moreover, trade takes place without delay when a seller proposes. Therefore, the mismatch prob-

lem is mitigated as the search friction diminishes, which leads to a higher welfare. As we can see

from this argument, unobservability of the investment plays no role in improving social welfare.

The fact that s(α, β) > s0 when α > 0 demonstrates, again, the importance of using the data on

both the trade efficiency and the entrants’ type distribution when evaluating the market efficiency.

Consider two markets: one where β is close to 1 and α = 0, and the other where β is small and

α is small but positive, such that sellers entering the market are more efficient, on average, in the

20It is easy to verify that x̄(α, β) and s(α, β) are continuous in α. The convergence of x̄ and s as β increases to 1 is
not uniform, because there does not exist a single β̄(ε), such that x̄(α, β)− x∗ < ε or s∗ − s(α, β) < ε for any α > 0
and any β > β̄(ε). In particular, when α is arbitrarily close to 0, the meetings need to arrive arbitrarily frequently (the
speed of which depends on α) so that a seller has the chance to make an offer almost immediately after entry.
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first market. The data on the entrants’ production costs alone suggests that the first market would

yield a higher social welfare, but that the second market is actually more efficient.

6.4 Random Proposers and Costly Entry

In reality, entering a market could be costly. In the online appendix, we consider a scenario where

a seller decides, first, whether to pay a fixed cost to enter and, if he does, how much he will invest

in order to lower his production costs. We incorporate this endogenous entry decision into the

setting with random proposers, and then explore how the seller’s extensive margin of that entrance

decision interacts with the investment incentives and trade efficiency.21 We show that, with positive

search frictions, there is either redundant or insufficient entry unless the bargaining power takes

on a particular value that depends on the investment cost function.22 When the search friction

vanishes, however, both the investment strategy and the entry decision become efficient as long as

the seller’s probability of proposing is strictly positive. This means that the convergence results in

the setting with random proposers and exogenous entry are robust for this alternative assumption

of costly entry.

In Appendix A, we explore two extensions of the basic model and discuss their policy implica-

tions. First, when buyers can also invest before entering the market, unobservability results in buy-

ers using a mixed investment strategy and thus underinvesting even when they have full bargaining

power. We also show that when buyers invest, it alleviates the mismatch problem. In the second

extension, we demonstrate that, if the investment is randomly observable, the mismatch problem

21When α = 0, any positive entry costs would lead to an empty market in the steady state because sellers are fully
extracted. The entry decision is non-trivial in the setting with random proposers. On the other hand, the basic model
can be seen as a market with zero entry cost in which there is a continuum of equilibria with different measures of
seller entrants. We focus on the equilibrium where the measure of buyer- and seller-entrants is equal, which maximizes
the social welfare when the search friction vanishes, as we show in the online appendix.

22This discussion on efficient bargaining power is related to the literature on optimal trading protocol with search
friction, such as Hosios (1990) and Delacroix and Shi (2018). The common emphasis is on how trading protocols
influence the efficiency through the agents’ participation decisions. The difference between Hosios (1990) and our
paper is that the optimal bargaining power in our model depends not only on the matching function, but also on the
investment cost function. Delacroix and Shi (2018) study how entry costs and the costs of organizing trade determine
which side should organize the trade to maximize the surplus in a directed search model. Similarly, we highlight how
costs of entry and the cost of investment determine the optimal bargaining protocol.
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is alleviated and buyers gain a higher payoff. This implies that social welfare is non-monotonic

in observability and that making investments randomly observable improves social welfare. In the

online appendix, we study two more extensions. First, we show that, if buyers can costly verify

the paired seller’s production cost, they will either randomize between verifying and not verifying,

or will not verify. Therefore, the agents’ payoffs are the same as in the basic model. Second,

we discuss how the ex ante payoff equivalence property and the mixed strategy equilibrium might

survive when sellers are ex ante heterogeneous.

7 Conclusion

This paper examines the effects of private information when market participants can invest in order

to change their characteristics. In this case, the entrants’ type distribution is correlated with the

trading outcomes rather than exogenously given. We show that, although agents invest a positive

amount, the equilibrium payoffs will be the same as if investments were observable and agents

invested nothing. Unobservability has two effects: the extraction-limitation effect, which motivates

investments, and the mismatch effect, which causes trade inefficiency. The two opposing effects

exactly cancel each other out given any search friction. Even when the search friction vanishes and

sellers invest almost efficiently, social welfare does not converge to the first best level in the basic

model due to the persistent mismatch effect.

As for future research, one possible direction to investigate would be the optimal bargaining

power allocation when agents on both sides make investments that are unobservable. This problem

is non-trivial because the allocation needs to strike a balance between minimizing mismatches and

maximizing both sides’ investment incentives.23 We could also extend the analysis to a scenario

in which a seller’s investments not only benefit himself but also raise the valuation of the paired

buyer. This additional feature means that, when making the price offers, a buyer cares not only

about the probability of trade, as in the current model, but also her seller’s type.

23More detailed discussion could be found in Appendix A.A.

29



Appendices

A Other Extensions and Policy Implications

In this section, we discuss two other extensions and then move on to policy implications for the

basic model and the extensions.

Appendix A.A Other Extensions

Two-sided Investments In the first extension, we assume that both sides of the market can invest

before entry. We demonstrate that buyers will underinvest even if they have full bargaining power

as a consequence of unobservability and that the mismatch problem is mitigated when buyers can

also invest.

In particular, assume that a buyer can raise her valuation to y with investments e(y), where

e(y0) = e′(y0) = 0, and e(y) is strictly increasing, strictly convex and continuously differentiable

for any y > y0.24 The observability of the buyer’s investment is irrelevant, because we retain the

assumption that buyers have full bargaining power, as in the basic model.

Firstly, we can see that the ex ante payoff equivalence property remains true in this extension,

implying that this property is not restricted to one-sided investments. When investments are ob-

servable, sellers are fully extracted at the search stage and hence invest zero ex ante. Buyers offer

x0 and trade immediately after entry, meaning that their marginal benefit of investment is 1, and

they will therefore invest e(y∗), which satisfies e′(y∗) = 1. When investments are unobservable,

the sellers who have invested the lowest amount are either fully extracted or find the price too low

to accept, which makes their search stage payoff 0 and the ex ante investments 0. Buyers who

propose the corresponding reserve price x0 are offering the highest price and hence trade immedi-

ately after entry, inducing them to invest e(y∗). Then sellers receive zero payoff ex ante and buyers
24This assumption excludes any complementarity between investments, which greatly simplifies the analysis but

precludes some interesting and relevant scenarios. For instance, the surplus from trade could be supermodular in x
and y, in which case the marginal benefit of the buyer’s investment increases in the seller’s investment. We will leave
the analysis of more general cases for future work.
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receive payoff y∗ − x0 − e(y∗) ex ante with either observable or unobservable investments.

In the analysis that follows, we focus on the buyer’s investment strategy and the steady state

valuation distribution in order to highlight the new results. Use Ge(y) to denote the probability

that a buyer entrant invests weakly less than e(y) and use G(y) for the probability that a buyer

incumbent has a valuation weakly lower than y.

Proposition 5. In the unique steady state equilibrium with two-sided investments,

1. G and Ge are continuous and have support [y, y∗], where G(y) = Ge(y) = 0, y < y∗ and it

is uniquely determined by

y∗ − x0 − e(y∗) = [y − x∗ − βc(x∗)]e′(y)− e(y).

The social welfare and the buyer’s ex ante payoff equals y∗ − x0 − e(y∗), and sellers get an

ex ante payoff of 0.

2. As β → 1, limβ→1 y < y∗ and limβ→1G(y) = limβ→1Ge(y) = 1.

In the unique steady state, the support of Ge is non-degenerate, meaning that buyers underinvest

even when they have full bargaining power. This holds even when the search friction vanishes, as

stated in the second part of Proposition 5. The reason for underinvesting stems from the presence

of diverse price offers, which, as we have shown, must be true when investments are unobservable.

Buyers who offer a lower price tend to trade more slowly compared to those who offer a higher

price. They have a smaller marginal benefit of investment and therefore invest less. When the

search friction vanishes, almost all buyers offer the lowest reserve price and experience delay in

trade. Consequently, almost all buyers invest e(y) < e(y∗).

Another interesting feature here is that the mismatch problem is mitigated when buyers also

invest. The welfare is y∗ − x0 − e(y∗) while almost all buyers invest less than e(y∗). It must be

the case that some of the gain from the sellers’ investments is realized ex ante because of a lower

degree of mismatch. To see why, notice that buyers have higher ex post gains from trade when
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they also invest and have a stronger incentive to speed up trade. To keep buyers indifferent, the

cost distribution of incumbent sellers must be more efficient so that buyers are more likely to trade

in a meeting with a given price. This leads to a lower degree of mismatch.

A natural question to ask is, what would happen if both sides could propose and make invest-

ments that are unobservable to their partners? Agents would continue to play mixed investment

strategies due to unobservability. Otherwise, suppose all sellers were to invest the same amount,

which is less than c(x∗), and all buyers were to invest the same amount as well. Then all buyers

would offer the same price and have the same reserve price. A seller would optimally deviate to

invest c(x∗) and obtain all the gains. Anticipating this, buyers would offer the price rS(x
∗) in-

stead and extract all the surplus when they make their offers. This would undermine the sellers’

incentive to invest, so they would invest less than c(x∗), which brings us back to the beginning

of this argument. However, a complete characterization of the equilibrium requires considerable

extra effort and is beyond the scope of this paper. To see where the difficulties lie, notice that,

in the extension of two-sided investments, the ex ante payoffs can be obtained independent of the

stationary distributions. Then we can derive the stationary distributions based on the ex ante pay-

offs. In the scenario considered here, however, the ex ante payoffs and the stationary distributions

in equilibrium are linked and cannot be determined separately. Consider the least efficient seller,

whose payoff was used to calculate all sellers’ ex ante payoff in the previous extension. The highest

reserve price that he proposes will only be accepted by the buyers with the highest valuation. His

payoff will depend on the percentage of buyers who are investing the highest amount in the mar-

ket as well as these buyers’ reserve price, which are equilibrium objects. We leave more detailed

analysis to future work.

When Investments are Observable with a Positive Probability In the second extension, we

show that the buyers’ payoff and social welfare will be higher when investments are randomly

observable. Combined with the payoff equivalence property of the basic model, this means that

social welfare is not monotonic in observability.
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The discussion in the basic model suggests that if the mismatch problem can be alleviated, then

the investments should be able to improve social welfare. To see this, assume that the investments

are observable with probability q ∈ (0, 1) in each meeting independently. Following the logic in the

basic model, sellers get an ex ante payoff of zero and the production costs in the market range from

x < x0 to x0. A type x seller receives information rent when investments are unobservable, and is

fully extracted otherwise. That is, U(x) = qβU(x)+(1−q)
∫
(p−x)dH(p). The condition c′(x) =

−(1−q)
1−qβ

then uniquely determines x, and x < x0. Buyers offer a range of prices when investments

are unobservable. Among them, some offer rS(x0) = x0 when investments are unobservable and

rS(x) = x + βc(x) if the production cost is revealed to be x. Accordingly, the buyer’s payoff can

be calculated as

π = (y0 − x0)(1− q) + q

∫ x0

x

[y0 − x− βc(x)]dF (x).

We can verify that the buyer’s payoff, which equals the social welfare, is strictly larger than

s0. This is because, when investments are observable, there is no mismatch. Then, the gain from

investments, which is strictly positive, is realized without any delay, which is reflected in the second

term of π.

Appendix A.B Policy Implications

It might seem intuitive that reducing the search friction would ease trade and thus raise social

welfare. Our basic model, however, demonstrates that, when sellers can make ex ante investments

but have no bargaining power, reducing the search friction actually leads to a higher degree of

mismatch and thus does not improve social welfare.

We know, however, that seller entrants indeed invest positive amounts and generate ex post

gains. The key is to mitigate the mismatch problem so that these ex post gains can be realized as

early as possible. Our analysis suggests three measures.

First, making investments randomly observable can improve trade efficiency. For example, an
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authority could verify the production cost of a seller and provide this information to a buyer with

some probability. In the online appendix, we show in the extension about costly verification that

allowing buyers to verify at a cost does not change social welfare, because buyers must be indiffer-

ent between verifying and not verifying in equilibrium. So, indeed, some benevolent third party is

needed to collect the information in order to improve social welfare. Second, encouraging buyers

to invest may also alleviate the mismatch problem. On the other hand, with these two measures,

sellers still get an ex ante payoff of zero because they have no bargaining power. Therefore, if the

policy maker aims to improve social welfare and raise the sellers’ payoff at the same time, he or

she could consider increasing the sellers’ bargaining power. If the policy maker is able to reduce

the search friction simultaneously, then social welfare would further increase and converge to the

first best as the search friction vanishes.

B Proofs

Proof of Lemma 1

1. A type x seller can always adopt the reserve price of a type x+ϵ seller, for some ϵ > 0. Function

U is therefore strictly decreasing in x.

We know

U(x) = (E(p | p ≥ rS(x))− x)(1−H(rS(x))) +H(rS(x))βU(x).

After multiplying both sides by β and adding x, the left-hand side becomes rS(x). We re-arrange

the equation to have:

(1− β)rS(x) + β [rS(x)− E(p | p ≥ rS(x))] (1−H(rS(x))) = (1− β)x.

The left-hand side strictly increases in rS(x) and the right-hand side strictly increases in x, which

implies that rS(x) strictly increases in x.
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Denote the highest price that a buyer offers as rS(x̃). Plugging in any x ≥ x̃, equation (1)

becomes U(x) = βU(x), which is equivalent to U(x) = 0, implying that U is continuous at

x ≥ x̃. For x < x̃, U can only have downward jumps because it decreases in x. A downward

jump of U is equivalent to a downward jump of rS at the corresponding point. This contradicts the

earlier conclusion that rS strictly increases in x. Then both U and rS are continuous.

2. Consider any xl, xh ∈ (x1, x2). For any λ ∈ (0, 1), denote λxl + (1 − λ)xh as xλ. When

H(rS(x
2)) − H(rS(x

1)) − Pr(p = rS(x
1)) = 0, H(rS(xl)) = H(rS(xh)) = H(rS(xλ)) and

E(p | p ≥ rS(xl)) = E(p | p ≥ rS(xh)) = E(p | p ≥ rS(xλ)). Then

λU(xl) + (1− λ)U(xh) =(E(p | p ≥ rS(xλ))− xλ)(1−H(rS(xλ)))

+H(rS(xλ))β [λU(xl) + (1− λ)U(xh)] .

That is, U(xλ) = λU(xl) + (1− λ)U(xh). The function U is linear over the interval [x1, x2].

Proof of Lemma 2 and Proposition 1

According to (4), the buyer’s payoff decreases in p for any p > rS(x̄). Therefore, buyers never

offer a price above rS(x̄). Then U(x̄) = 0 and U(x̄) − c(x̄) = −c(x̄), which implies that x̄ = x0

and rS(x̄) = x̄+ βU(x̄) = x0. Then v = U(x̄)− c(x̄) = 0.

The price rS(x0) = x0 must be on the support of H . Otherwise, suppose the highest price on

the support is rS(x̃), where x̃ < x0 because no buyer would offer a price higher than x0. Then a

type x̃ seller would earn zero payoff on the search stage based on (1) and a negative ex ante payoff

of −c(x̃), which implies that x̃ is not on the support of F . In this case, buyers should not offer

rS(x̃). This leads to a contradiction. Then π = y0 − x0 = s0 and s = v + π = s0.

Proof of Lemma 3

We first note that if a price offer p > rS(x) is on the support of H , then x̂(p) must be on the

support of F and Fe. Otherwise, denote the highest production cost on the support that is lower

than x̂(p) as x′. A buyer who offers price p can lower the price to rS(x
′) without affecting the
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probability of trade. Also, if p = rS(x) is on the support of H , then F and Fe must have a point

mass at x. It is because a buyer who offers rS(x), which is only accepted by type x sellers, would

get a payoff of zero if F (x) = 0 and obtain a higher profit by deviating to the price of x0. Now

suppose that there are p1, p2 on the support of H , such that any p ∈ (p1, p2) is not offered. Since

p1 and p2 are on the support, xi ≡ x̂(pi), i = 1, 2 must be on the support of F and Fe. By the

second part of Lemma 1, the function U is linear over the interval [x1, x2]. On the other hand,

c(x) is strictly convex. This means that U(x1) − c(x1) = U(x2) − c(x2) < U(x) − c(x) for any

x ∈ (x1, x2), which contradicts the indifference condition. Therefore, H has an interval support.

By the continuity of rS , F and Fe also have an interval support.

The lower bound of the price offers never goes below the reserve price of the most efficient

seller, i.e., H(rS(x)) = 0, because, otherwise, a buyer offering the lowest price would never trade,

preferring to offer x0 and earn y0 − x0 > 0. Plugging H(rS(x)) = 0 into the envelope condition

U ′(x) = −(1 − H(rS(x))) + H(rS(x))βU
′(x) at x = x, it becomes U ′(x) = −1. Then the

indifference condition would imply U ′(x) = c′(x) = −1, meaning that x = x∗.

Hence, the support of F and Fe is [x∗, x0] and the support of H is [rS(x∗), rS(x0)].

Next, we show that H has no atom. Function U is differentiable at any x on the support,

because 1) F strictly increases over the support, 2) U(x)− c(x) = 0 and 3) c(x) is differentiable.

This implies that function rS and x̂ are differentiable at any x and p on the support. Hence, we can

solve H(p) from the equilibrium condition U ′(x) = c′(x) as follows:

H(rS(x)) =
1 + c′(x)

1 + βc′(x)
⇒ H(p) =

1 + c′(x̂(p))

1 + βc′(x̂(p))
.

It is straightforward to verify that H has no atom.

Finally, we show that F and Fe have no point mass at any x > x∗. Suppose x ∈ (x∗, x0] is

a mass point. Then there exists an ε > 0, such that buyers do not offer any price p ∈ (rS(x −

ε), rS(x)), because, by raising the price slightly to rS(x), buyers enjoy a discontinuous upward

jump of the trading probability. This contradicts the earlier conclusion that H has an interval
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support.

Proof of Corollary 1

Take any β1, β2 ∈ (0, 1) with β1 < β2. Denote the corresponding price strategy and the

stationary cost distribution as H i(riS(x)) and F i(x) for i = 1, 2. We can calculate

∫
H2(r2S(x))dF

2(x)−
∫

H1(r1S(x))dF
1(x)

=

(∫
H2(r2S(x))dF

2(x)−
∫

H1(r1S(x))dF
2(x)

)
+

(∫
H1(r1S(x))dF

2(x)−
∫

H1(r1S(x))dF
1(x)

)

The first parenthesis is strictly positive following (9). The second parenthesis is also strictly posi-

tive because of (10) and the fact that H(rS(x)) strictly increases in x. This proves that the degree

of mismatch strictly increases in β.

That
∫
H(rS(x))dF (x) converges to 1 when β converges to 1 follows from the fact that

H(rS(x0)) = 1 and that F (x) converges in distribution to a point mass at x0.

Proof of Proposition 3

The first two parts of the proposition have been proven in the main text. We only need to show

that Fe(x
∗) approaches 1 when β converges to 1. By (6),

Fe(x
∗) = [1 +

1

F (x∗)

∫ x0

x∗
(1−H(rS(x)))f(x)dx]

−1 ≡ [1 + A]−1. (15)

For any ϵ1, ϵ2 > 0 that satisfy ϵ1 + ϵ2 < x0 − x∗, by the Median Value Theorem, there exist

x1 ∈ (x∗, x∗ + ϵ1), x2 ∈ (x∗ + ϵ1, x0 − ϵ2), and x3 ∈ (x0 − ϵ2, x0), such that

A =
1

F (x∗)

[∫ x∗+ϵ1

x∗
(1−H(rS(x)))f(x)dx+

∫ x0−ϵ2

x∗+ϵ1

(1−H(rS(x)))f(x)dx+

∫ x0

x0−ϵ2

(1−H(rS(x)))f(x)dx

]
=[1−H(rS(x1))]

F (x∗ + ϵ1)− F (x∗)

F (x∗)
+ [1−H(rS(x2))]

F (x0 − ϵ2)− F (x∗ + ϵ1)

F (x∗)

+ [1−H(rS(x3))]
1− F (x0 − ϵ2)

F (x∗)
. (16)
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First, fix any ϵ1 and ϵ2, and consider the second term of (16). The term F (x0− ϵ2)−F (x∗+ ϵ1)

can be expressed as

(y0 − x0)(−(x∗ + ϵ1)− βc(x∗ + ϵ1) + (x0 − ϵ2) + βc(x0 − ϵ2))

(y0 − x0 +
ϵ2−βc(x0−ϵ2)

1−β
)(y0 − β(y0 − x0)− (x∗ + ϵ1)− βc(x∗ + ϵ1))

.

While all other terms are bounded for any β ∈ [0, 1), given any ξ, the term ϵ2−βc(x0−ϵ2)
1−β

> 1/ξ

when β > 1−ξϵ2
1−ξc(x0−ϵ2)

∈ (0, 1). This implies that 1−F (x0 − ϵ2) > F (x0 − ϵ2)−F (x∗ + ϵ1) when

β is close enough to 1. At the same time,

[1−H(rS(x2))]− [1−H(rS(x3))] = (1− β)

(
−c′(x2)

1 + βc′(x2)
− −c′(x3)

1 + βc′(x3)

)
.

The terms inside the second parentheses of the right-hand side are bounded for any given ϵ1, ϵ2 and

β. Therefore, [1 − H(rS(x2))] − [1 − H(rS(x3))] is close to 0 when β is close to 1. Combined,

[1 − H(rS(x2))][F (x0 − ϵ2) − F (x∗ + ϵ1)] < [1 − H(rS(x3))][1 − F (x0 − ϵ2)] when β is close

enough to 1, which is equivalent to the second term being smaller than the third term of (16).

Second, the third term of (16) is smaller than

[1−H(rS(x3))]
1− F (x∗)

F (x∗)
=

−c′(x3)(x0 − x∗ − βc(x∗))

(y0 − x0)(1 + βc′(x3))
.

When ϵ2 is arbitrarily small, x3 is arbitrarily close to x0, which implies that the third term is

arbitrarily close to 0 independent of β.

Next, by the continuity of F , when ϵ1 is arbitrarily small, F (x∗+ϵ1)
F (x∗)

is arbitrarily close to 1.

Because 1 − H(rS(x1)) is bounded, the first term is arbitrarily close to 0 independent of β when

ϵ1 is arbitrarily close to 0.

Finally, based on the conclusion in the first step that the second term is smaller than the third

term for any given ϵ1 and ϵ2 when β is large enough, we can conclude that the second term is

arbitrarily close to 0 when β is large enough.

Then, according to (15), Fe(x
∗) converges to 1 when β converges to 1.
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Proof of Lemma 4

What remains to be shown are the payoffs and the stationary cost distribution in the two types

of equilibrium, as well as the condition of primitives under which each type of equilibrium holds.

Active Equilibrium. Plug F (x̄) = 1 into (14), and the ex ante payoffs can be solved from (11)

to (14) as v = α(y0 − x̄) − c(x̄) and π = (1 − α)(y0 − x̄), in which x̄ is uniquely determined by

(13). The welfare s = v + π = y0 − x̄ − c(x̄). For this equilibrium to arise, sellers must have an

incentive to invest, i.e., α(y0 − x̄) ≥ c(x̄) should hold.

Partial-Active Equilibrium. In the Partial-Active Equilibrium, seller’s ex ante payoff v = 0

because they are indifferent between investing c(x̄) and 0. At the same time, v = α
1+αβ−β

(y0− x̄−

βπ)− c(x̄) given π. Then π can be solved from the condition v = 0 as

π =
α(y0 − x̄)− (1 + αβ − β)c(x̄)

αβ
.

The welfare s = v + π = π. We also know from the buyer’s value function that

π =αβπ + (1− α)[F (x̄)(y0 − x̄− βU(x̄)) + (1− F (x̄))βπ]

=αβπ + (1− α)[F (x̄)(y0 − x̄− βc(x̄)) + (1− F (x̄))βπ].

Equating the two π’s, F (x̄) can be solved as:

F (x̄) =
α(y0 − x̄)

β(1− α)c(x̄)
− 1− β(1− α)

β(1− α)
.

Because all entrants invest c(x̄), F (x) = F (x̄) for any x ∈ [x̄, x0). For this to be an equilibrium,

F (x̄) should be larger than 0 and smaller than 1. The former is equivalent to α
1−β(1−α)

> c(x̄)
y0−x̄

,

which always hold because (13) implies α
1−β(1−α)

> c(x̄)
x0−x̄

> c(x̄)
y0−x̄

. The latter requires α(y0 − x̄) <

c(x̄).

In sum, the above discussion shows that the Active Equilibrium emerges and is unique when

α(y0 − x̄) ≥ c(x̄). Otherwise, the Partial-Active Equilibrium emerges and is unique.
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Proof of Proposition 4

Because x̄ is on the support of Fe, agents’ payoffs can be calculated based on the payoff of

a seller who invests c(x̄) and that of a buyer who offers rS(x̄). Their payoffs are independent

of the distributions H and F and are the same as those in the benchmark case with observable

investments.

Proof of Corollary 2

According to (13), for any given α > 0, x̄(α, β) strictly decreases in β because −α
1−β(1−α)

strictly decreases in β and the function c is strictly convex. In addition, −α
1−β(1−α)

converges to −1

as β converges to 1. Therefore, x̄(α, β) converges pointwise to x∗. We can also calculate that

1 − c′(x) < ε is equivalent to β > 1
1−α

− α
(1−α)(1−ε)

. There does not exist a β̄ < 1, such that

x̄(α, β) − x∗ is arbitrarily small whenever β ∈ (β̄, 1) for any α > 0. Therefore, x̄(α, β) does not

uniformly converge to x∗.

In the Active Equilibrium,

s(α, β) = y0 − x̄(α, β)− c(x̄(α, β)),

which is decreasing in x̄(α, β). Therefore, for any given α > 0, s(α, β) strictly increases in β and

converges pointwise to s∗. In the Partial-Active Equilibrium,

s(α, β) =
1

β
[y0 − x̄(α, β)− 1 + αβ − β

α
c(x̄(α, β))].

For any given α > 0, s(α, β) strictly increases in β because (taking into account that x̄ decreases

in β)

∂s(α, β)

∂β
∝ c(x̄)− α(y0 − x̄) > 0.

As β converges to 1, both 1
β

and 1+αβ−β
α

converge to 1. Therefore s(α, β) converges pointwise to

s∗. Finally, s(α, β) does not uniformly converge to s∗ because x̄(α, β) does not uniformly converge
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to x∗.

Proof of Proposition 5

1. Denote the set of optimal price(s) offered by a type y buyer by P (y). Any element in P (y)

maximizes the type y buyer’s payoff:

Π(y) = max
p

{(y − p)F (x̂(p)) + [1− F (x̂(p))]βΠ(y)}.

The envelope condition is Π′(y) = F (x̂(p(y))), where p(y) ∈ P (y). From the buyer’s optimal

investment condition, Π′(y) = e′(y). In addition, we know that function x̂(p) strictly increases in

p, and, following the same argument as in the proof of Lemma 3, the CDF F is continuous and has

support [x∗, x0]. Therefore, P (y) is single-valued and is a function of y in the steady state.

The function P strictly increases in y for the following reason. If supp(G) is degenerate, then

we have nothing to prove. Otherwise, consider any y1, y2 ∈ supp(G) with y1 > y2. Denote P (yi)

by pi for i = 1, 2. Then the following two inequalities must hold:

(y1 − p1)F (x̂(p1)) + [1− F (x̂(p1))]βΠ(y1) > (y1 − p2)F (x̂(p2)) + [1− F (x̂(p2))]βΠ(y1),

(y2 − p2)F (x̂(p2)) + [1− F (x̂(p2))]βΠ(y2) > (y2 − p1)F (x̂(p1)) + [1− F (x̂(p1))]βΠ(y2).

We add the two inequalities and re-arrange, and we have

(y1 − y2)[F (x̂(p1))− F (x̂(p2))] > [F (x̂(p1))− F (x̂(p2))][βΠ(y1)− βΠ(y2)].

By the assumption on e, e(y1)− e(y2) is strictly smaller than y1 − y2. Combined with the buyer’s

indifference condition that Π(y1) − Π(y2) = e(y1) − e(y2), we have y1 − y2 > Π(y1) − Π(y2) >

β[Π(y1)−Π(y2)]. Given this, the above inequality implies that F (x̂(p1)) > F (x̂(p2)). This proves

that P strictly increases in y.

Following the same argument as in the proof of Lemma 3, the function H is continuous and has

support [rS(x∗), rS(x0)]. Then the monotonicity of P implies that the CDF G and Ge has support
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[y, ȳ] and G(y) = Ge(y) = 0. To obtain the upper bound ȳ, note that e′(ȳ) = Π′(ȳ) = 1. The

first equality follows from the indifference condition, and the second equality follows from the

envelope condition and the fact that P (y) = x0. This means that ȳ = y∗ and π = Π(ȳ) − e(ȳ) =

y∗ − x0 − e(y∗). Similarly, to obtain the lower bound y, note that P (y) = rS(x
∗) and

e′(y) = Π′(y) =
F (x∗)

1− β(1− F (x∗))
.

Calculate π based on the type y buyer’s payoff,

π = Π(y)− e(y) = (y − x∗ − βc(x∗))
F (x∗)

1− β(1− F (x∗))
− e(y).

Plug in π = y∗ − x0 − e(y∗) and F (x∗)
1−β(1−F (x∗))

= e′(y), and the condition becomes

y∗ − x0 − e(y∗) = (y − x∗ − βc(x∗))e′(y)− e(y). (17)

The right-hand side strictly increases in y. It equals zero at y = y0, which is strictly smaller than

the left-hand side. It is strictly larger than the left-hand side at y = y∗. Therefore, (17) uniquely

determines y, and y is strictly lower than y∗.

Next, we establish the existence and uniqueness of the equilibrium. The equilibrium price P (y)

is uniquely solved from the indifference condition Π(y)− e(y) = π as

(y − P (y))e′(y)− e(y) = y∗ − x0 − e(y∗)

⇒ P (y) = y − e(y) + y∗ − x0 − e(y∗)

e′(y)
.

In addition, combining the envelope condition of Π(y) and the indifference condition that Π′(y) =

e′(y) for any y on the support, we can solve

F (x̂(P (y))) =
(1− β)e′(y)

1− βe′(y)
.
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Because the price function P is continuous and strictly increasing in y, the CDF F is solved

uniquely. We can also plug the function P into H as calculated in (7) to solve G as

G(y) =


0, if y ∈ (−∞, y)

1+c′(x̂(P (y)))
1+βc′(x̂(P (y)))

, if y ∈ [y, y∗],

1, if y ∈ (y∗,+∞).

(18)

Finally, from the steady state condition, the CDF Ge is uniquely determined.

2. When we plug β = 1 and y = y∗ into the right-hand side of (17), it becomes y∗ − x∗ − c(x∗)−

e(y∗) and it is strictly larger than the left-hand side. This implies that limβ→1 y < y∗. For any

y > y, x̂(P (y)) > x∗. According to (18), G(y) → 1 for any y > y when β → 1. This also implies

that for any y > y, there exist y̌ ∈ (y, y) and ˇ̌y ∈ (y, y∗), such that

Ge(y) =

∫ y

y
F (x̂(P (ỹ)))dG(ỹ)∫ y∗

y
F (x̂(P (ỹ)))dG(ỹ)

=
F (x̂(P (y̌)))G(y)

F (x̂(P (ˇ̌y)))
=

e′(y̌)(1− βe′(ˇ̌y))

e′(ˇ̌y)(1− βe′(y̌))
G(y)

with both y̌ and ˇ̌y approaching y when β → 1. Therefore, Ge(y) → 1 when β → 1 for any y > y.
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