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This paper studies the energy futures risk premia that can be extracted through long-short portfolios that exploit heterogeneities across contracts as regards various characteristics or signals and integrations thereof. Investors can earn a sizeable premium of about 8% and 12% per annum by exploiting the energy futures contract risk associated with the hedgers' net positions and roll-yield characteristics, respectively, in line with predictions from the hedging pressure hypothesis and theory of storage. Simultaneously exploiting various signals towards style-integration with alternative weighting schemes further enhances the premium. In particular, the style-integrated portfolio that equally weights all signals stands out as the most effective. The findings are robust to transaction costs, data mining and sub-period analyses.

Introduction

The hedging pressure hypothesis of [START_REF] Cootner | Returns to speculators: Telser vs. Keynes[END_REF] and [START_REF] Hirshleifer | Residual risk, trading costs, and commodity futures risk premia[END_REF][START_REF] Hirshleifer | Hedging pressure and future price movements in a general equilibrium model[END_REF] asserts that energy futures markets exist to enable the transfer of price risk from hedgers, that is, energy producers and consumers, to speculators. In other words, well-functioning energy futures markets ought to reward speculators for absorbing the risk that hedgers seek to avoid: speculators shall earn a positive risk premium by taking long positions in relatively cheap (or backwardated) contracts on which hedgers are net short, and by taking short positions in relatively expensive (or contangoed) contracts on which hedgers are net long. 1 Evidence for energy futures contracts of the pricing role of hedging pressure signals (or the extent to which hedgers are net short) and speculative pressure signals (or the extent to which speculators are net long) can be found in [START_REF] Sanders | Hedgers, funds, and small speculators in the energy futures markets: An analysis of the CFTC's commitments of traders reports[END_REF], [START_REF] Dewally | Determinants of trader profits in commodity futures markets[END_REF] and [START_REF] Fattouh | The role of speculation in oil markets: What have we learned so far?[END_REF].

The theory of storage of [START_REF] Kaldor | Speculation and economic stability[END_REF], Working (1949) and [START_REF] Brennan | The supply of storage[END_REF] serves as an alternative framework for the pricing of futures contracts on storable energies. It asserts that the term structure of energy futures prices (that is, the futures prices of different maturity contracts at a given point in time) reflects supply and demand levels. In particular, a downward-sloping term structure (and thus a positive roll-yield 2 ) for a specific energy 1 Backwardation is the market state where the current price of an asset in the spot market is higher than its current price in the futures market, whereas contango is the opposite state where the spot price is lower than the futures price. The hedging pressure hypothesis rationalizes the backwardation versus contango dynamics with reference to the net positions of hedgers. When hedgers are net short, futures prices are set low relative to their expected values at maturity to entice net long speculation (backwardation). When hedgers are net long, futures prices are set high relative to their expected values at maturity to induce net short speculation (contango).

2 Roll yield, also called basis, is the difference between the spot price of an asset and that of the corresponding futures contract at a particular point in time. A branch of the empirical finance literature measures the commodity futures roll yield using the front-end contract price as proxy for the spot price. This approach is vindicated by the fact that the futures prices commodity indicates that the front-end price (that proxies the spot price) is high relative to the prices of more distant contracts, suggesting that the energy commodity is currently undersupplied relative to demand or that inventories are low; the market is backwardated and thus, futures prices are expected to increase. Vice versa, an upward-sloping term structure (negative roll-yield) for a given energy commodity indicates that the front-end price is low relative to the prices of more distant contracts, or that the energy commodity is over-supplied (high inventory); the market is contangoed and thus, futures prices are expected to fall.

Supportive evidence on the futures pricing role of inventory and roll-yield for storable energies can be found in e.g., [START_REF] Cho | The supply of storage in energy futures markets[END_REF], [START_REF] Serletis | Business cycles and the behavior of energy prices[END_REF], [START_REF] Pindyck | The dynamics of commodity spot and futures markets: A primer[END_REF], [START_REF] Alquist | What do we learn from the price of crude oil futures?[END_REF], [START_REF] Dewally | Determinants of trader profits in commodity futures markets[END_REF], [START_REF] Byun | Speculation in commodity futures Markets, inventories and the price of crude oil[END_REF], and [START_REF] Ederington | Dynamics of arbitrage[END_REF]. 3 The present paper departs from the above studies in that we do not seek to measure the risk premium associated with a specific energy futures contract (e.g., crude oil, electricity or natural gas futures) but rather our goal is to compare different long-short portfolio strategies to effectively extract the risk premium in the energy futures sector as a whole. Therefore, for this purpose we exploit the heterogeneity in the cross-section of energy futures contracts as regards various characteristics. Put differently, our paper adopts the perspective of a futures market investor that contemplates the whole energy sector as a source of risk premia. We converge upon maturity to the spot price (see e.g., [START_REF] Fama | Commodity futures prices: Some evidence on forecast power, premiums, and the theory of storage[END_REF][START_REF] Gorton | The fundamentals of commodity futures returns[END_REF]Szymanowska et al., 2014;[START_REF] Fernandez-Perez | Commodity markets, long-run predictability and intertemporal pricing[END_REF][START_REF] Boons | Basis momentum[END_REF]. 3 For electricity which is non-storable, the theory of storage does not apply and thus the risk premium has been linked to other factors such as: i) the expected variance and skewness of the wholesale prices, ii) the uncertainty in the spot price, demand for electricity and revenues generated within the Pennsylvania, New Jersey and Maryland (PJM) system, iii) unexpected variation in hydro-energy capacity and in the demand for hydro-energy and iv) past risk premia and basis [START_REF] Bessembinder | Equilibrium pricing and optimal hedging in electricity forward markets[END_REF][START_REF] Longstaff | Electricity forward prices: a high-frequency empirical analysis[END_REF][START_REF] Furió | Expectations and forward risk Premium in the Spanish deregulated power market[END_REF][START_REF] Lucia | On the risk premium in Nordic electricity futures prices[END_REF][START_REF] Furió | Optimal hedging under biased energy futures markets[END_REF]. The empirical analysis of [START_REF] Longstaff | Electricity forward prices: a high-frequency empirical analysis[END_REF] is extended by [START_REF] Martínez | Analysis of risk premium in UK natural gas futures[END_REF] to natural gas. consider characteristics that signal the phases of backwardation and contango (roll-yield, hedging pressure, speculative pressure and momentum 4 ), as well as characteristics that have been shown to play a pricing role across asset classes (value, liquidity and skewness). 5 To capture the risk premium associated with a specific energy commodity characteristic or signal, at each month end we form a long-short portfolio by allocating 50% of the total investor's mandate to long positions on the energy futures contracts that are expected to appreciate the most or depreciate the least according to the characteristic or signal (e.g., rollyield), and the remaining 50% to short positions on the energy futures contracts that are expected to depreciate the most or appreciate the least. The long-short positions are held for one month on a fully-collateralized basis, and this portfolio formation-and-holding process is rolled forward. As in the asset pricing branch of the broad commodity futures markets literature, the risk premium is defined as the expected excess return of characteristics-based long-short portfolios and represents the compensation that investors obtain for exposure to the risk associated with a given characteristic such as roll-yield or hedging pressure (see e.g., [START_REF] Gorton | Facts and fantasies about commodity futures[END_REF][START_REF] Erb | The strategic and tactical value of commodity futures[END_REF][START_REF] Asness | Value and momentum everywhere[END_REF]Szymanowska et al., 2014;[START_REF] Boons | Basis momentum[END_REF].

Following a recent literature initiated with the seminal contribution of [START_REF] Brandt | Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns[END_REF], we further test whether jointly exploiting many energy commodity characteristics into a unique style-integrated portfolio generates a better performance than exploiting them in 4 The trend in prices or momentum is able to capture the phases of backwardation and contango in commodity futures markets; winning (losing) contracts have backwardated (contangoed) characteristics such as positive (negative) roll-yields, net short (long) hedging, net long (short) speculation, and low (high) inventories [START_REF] Miffre | Momentum strategies in commodity futures markets[END_REF][START_REF] Gorton | The fundamentals of commodity futures returns[END_REF]. 5 There is pervasive evidence across different asset classes that under(over)priced assets visà-vis their far past values, with low (high) liquidity and negative (positive) skewness are expected to subsequently outperform (underperform); see e.g., [START_REF] Asness | Value and momentum everywhere[END_REF], [START_REF] Amihud | Liquidity and asset prices[END_REF], [START_REF] Koijen | Carry[END_REF], [START_REF] Amaya | Does realized skewness predict the cross-section of equity returns[END_REF], [START_REF] Chiang | Skewness and coskewness in bond returns[END_REF][START_REF] Fernandez-Perez | The skewness of commodity futures returns[END_REF].

isolation. The style-integration idea is simple and intuitive: the long leg of the portfolio comprises the energy futures contracts that most signals recommend to buy, and the short leg those contracts that most signals recommend to sell. We test the ability of various integration methods (that differ in their weighting scheme for the different characteristics) at capturing the energy risk premia.

The empirical findings reveal a hedging pressure risk premium of 7.58% a year (t-statistic of 2.22) which represents the compensation that speculators require for meeting the hedgers' demand for futures contracts, namely, for bearing hedgers' risk of price fluctuations. Furthermore, we find a term structure risk premium of 11.70% a year (t-statistic 2.79) that represents the compensation demanded by futures investors for taking on the risk of energy inventory risk fluctuations. These two particular results endorse both the hedging pressure hypothesis and the theory of storage for the pricing of energy futures contracts. Jointly exploiting all seven signals into style-integrated portfolios increases the premium up to 12.4% a year (t-statistic 4.05). The simplest style-integration approach that ascribes equal weights to the different signals stands out as the most effective. The findings are robust to trading costs, alternative designs of the integrated portfolio, data snooping tests and subperiods.

The present research agenda is relevant for three reasons. First, the paper provides novel empirical evidence from the specific energy futures sector that endorses the theory of storage of [START_REF] Kaldor | Speculation and economic stability[END_REF], Working (1949) and [START_REF] Brennan | The supply of storage[END_REF] and the hedging pressure hypothesis of [START_REF] Cootner | Returns to speculators: Telser vs. Keynes[END_REF] and [START_REF] Hirshleifer | Residual risk, trading costs, and commodity futures risk premia[END_REF][START_REF] Hirshleifer | Hedging pressure and future price movements in a general equilibrium model[END_REF]. It shows that when hedgers are net short (long) and the term structure of futures prices is downward (upward) sloped, energy futures contracts tend to appreciate (depreciate). As a byproduct, our empirical results from the specific energy sector refute the normal backwardation theory of [START_REF] Keynes | Treatise on Money[END_REF] by showing that a long-only portfolio of all energy futures contracts is not able to capture any risk premium.

Second, our empirical findings regarding the presence of a sizeable hedging pressure risk premium in energy futures markets suggest that a risk transfer mechanism is at play between hedgers such as producers, refiners or consumers of energy who wish to shun the risk of energy price fluctuations, and speculators who are willing to take on risk with the expectation of earning a return. This is important because it confirms the efficient functioning of energy futures markets in the sense that they are serving the originally-intended risk transfer purpose.

It is reassuring from a regulatory perspectiveif speculators act as important providers of liquidity and risk-transfer facility to hedgers, calls to further regulate speculative activity in energy futures markets are at this stage unwarranted. Therefore, our research indirectly speaks to the literature on the "financialization" of futures markets by suggesting, from the energy futures sector perspective, that speculators fulfil the important role of providing price insurance to hedgers (see also e.g., Till, 2009;Tang and Xiong, 2012;[START_REF] Fattouh | The role of speculation in oil markets: What have we learned so far?[END_REF][START_REF] Byun | Speculation in commodity futures Markets, inventories and the price of crude oil[END_REF].

Finally, the present exercise of comparing portfolio methods to extract energy futures risk premia is worthy also from the perspective of practitioners (e.g., investment banks, managed futures and commodity trading advisors 6 ) that design long-short profitable investments for their clients. Specifically, our paper provides a comparative analysis of alternative risk premia strategies in energy futures markets and highlights the effectiveness of an integrated portfolio that gives equal importance to all the energy commodity characteristics at hand. As 6 A commodity trading advisor (CTA) is a registered individual (trader or firm) that advices investors as regards commodity trading and manages commodity portfolios on their behalf. CTAs are regulated by the U.S. federal government through the Commodity Futures Trading Commission (CFTC) and the National Futures Association (NFA). such, it extends to the energy futures markets context a more general literature across asset classes that endorses style-integration (e.g., [START_REF] Brandt | Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns[END_REF][START_REF] Kroencke | International diversification benefits with foreign exchange investment styles[END_REF][START_REF] Barroso | Beyond the carry trade: Optimal currency portfolios[END_REF][START_REF] Fischer | Heuristic portfolio trading rules with capital gain taxes[END_REF][START_REF] Fernandez-Perez | A comprehensive appraisal of style-integration methods[END_REF].

Section 2 presents the portfolio methods to capture energy risk premia. Section 3 describes the data. Sections 4 and 5 discuss the empirical results and robustness tests. Section 6 concludes.

Methodology

Individual risk premia

We first consider long-short portfolios that define the investor's asset allocation based on a single style or signal. Some of these styles capture the fundamentals of backwardation and contango (term structure, hedging pressure, speculative pressure and past performance).

Other styles are associated with asset pricing factors that are pervasive across markets and that could likewise matter to the pricing of energy futures contracts (value, liquidity 7 and skewness). Table 1 summarizes the relevant literature and defines the different predictive signals corresponding to investment styles where denotes the cross-section of energy futures contracts being sorted and allocated into long-short portfolios, and represents the sequential month-end days when the portfolios are rebalanced.

To simplify the exposition, the signals are defined in such a way that higher (lower) values indicate a higher expectation that the ith energy futures price will rise (fall). Prior to 7 The Amivest liquidity proxy [START_REF] Amihud | Market microstructure and securities values: evidence from the Tel Aviv exchange[END_REF] captures the transaction volume associated with a unit change in the price or absolute return. The intuition behind this proxy is that if a security is liquid, the price impact of a given volume of trading is small. It follows that more liquid assets present higher Amivest measures. Like [START_REF] Marshall | Commodity liquidity measurement and transaction costs[END_REF] This out-of-sample approach seeks to mimic the energy futures investor's decisions in real time.

Integrated risk premia

Would the approach of integration of the separate styles into a unique portfolio be more effective at capturing energy futures market risk premia? We answer this question by deploying integrated portfolios that allocate wealth across the various single-style portfolios as follows:

,

where is an matrix that defines the asset allocation of the K single-style strategies to the N assets (in other words, is populated with as detailed above for the K singlestyle strategies) and is a vector that defines the exposures of the integrated portfolio to the K individual styles or risk factors . In total, we consider three main formulations of .

The first one, called equal-weight integration, simply allocates time-invariant equal weights to the K commodity characteristics. The latter two approaches, called optimized and volatility-timing integrations, are more sophisticated in the sense that they allow for timevarying, heterogeneous style exposures of the integrated portfolio to the K individual risk factors.

Equal-weight integration (EWI):

In its simplest form and following Barroso and Santa-Clara 

where is the excess return of the kth single-style portfolio at time t+1.

We entertain various utility functions that are widely-used in the literature such as:

Power utility: with the coefficient of relative risk aversion ( ),

Exponential utility: with the coefficient of absolute risk aversion ( ),

Mean variance utility: .

The style weights can also be obtained by minimizing the variance of the integrated portfolio's excess returns; namely, subject to (where this restriction is imposed to avoid the trivial solution ). All optimized integration settings constrain the weights to be non-negative; namely, .

Volatility-timing integration (VTI): Following [START_REF] Kirby | It's all in the timing: Simple active portfolio strategies that outperform naïve diversification[END_REF], this technique assigns higher (lower) weights to the styles with lower (higher) variance. Formally, for ,

For both OI and VTI, a window of 60 monthly observations is used to estimate and where is obtained by post-multiplying by as in Equation (1). is subsequently normalized; namely, to ensure full collateralization ( ). Thus defines the fully-collateralized allocation of the integrated portfolio towards the N energy contracts at portfolio formation time t (month end). That portfolio is held for a month and the process is subsequently repeated until the sample ends.

Evaluating the risk and the risk-adjusted performance of the various portfolios

We assess the risk profile of the portfolios by measuring (i) the downside volatility defined as the annualized standard deviation of negative excess returns, (ii) the 95% Cornish-Fisher

Value-at-Risk (VaR) which represents the maximum loss that the portfolio can incur with 95% probability after accounting for possible departures of its excess returns from normality, and (iii) the maximum drawdown or the portfolio's maximum loss from any peak to the subsequent trough over the sample period.

The risk-adjusted performance of the portfolios is assessed using various measures such as the Sharpe ratio (defined as the annualized mean of the portfolio's excess returns over its annualized total volatility), the Sortino ratio (defined as annualized mean excess return over annualized downside volatility) and the Omega ratio (defined as the probability of gains divided by the probability of losses using 0% as threshold). Finally and assuming a power utility function, we measure the certainty equivalent excess return of the portfolio as where is the portfolio excess return on month t+1, T is the number of out-of-sample months and is the relative risk aversion of the representative investor (we employ ).

indicates that, after taking into account the investor's aversion to risk, she still has a preference for the risky portfolio over the risk-free asset.

Data

The main data for the analysis are the daily front-end, second-and third-nearest prices of USexchanged futures contracts on oil (Brent crude oil, heating oil, light sweet crude oil, WTI crude oil), gas (natural gas, ethanol, RBOB gasoline and unleaded gas), electricity PJM and coal, obtained from Refinitiv Datastream. Table 2 indicates the futures exchange where each contract is traded and the start and end of the sample for each contract, as dictated by data availability. In order to entertain a minimum of four energy commodities in the cross-section, the sample start is December 1990. All portfolios are made up of front-end futures contracts which we roll to second nearest contracts at the end of the month prior to the maturity month; this rolling procedure is common in the literature and mimics the usual practice by investors of rolling their contracts prior to maturity to mitigate liquidity problems and avoid physical delivery (see e.g., [START_REF] Gorton | Facts and fantasies about commodity futures[END_REF][START_REF] Miffre | Momentum strategies in commodity futures markets[END_REF][START_REF] Fernandez-Perez | Commodity markets, long-run predictability and intertemporal pricing[END_REF]. Excess returns are measured as the difference in the natural log of the futures prices, i.e., where is the settlement price of the futures contract on commodity i at time t. It can be shown that the excess return represents the total return of a fully-collateralized futures position in excess of the risk-free rate [START_REF] Erb | The strategic and tactical value of commodity futures[END_REF].

We also obtain from Refinitiv Datastream the daily traded volume of each contract and from the Commodity Futures Trading Commission (CFTC) archive the weekly positions of large commercial (hedgers) and non-commercial (speculators) participants as provided in the Futures-Only Legacy Commitments of Traders (CoT) report from September 30, 1992 onwards. 8 These weekly positions of futures traders are used to calculate the hedging pressure and speculative pressure signals for each commodity as defined in Table 1. In order to make the comparison of performance across strategies as informative as possible, it is focused on the period July 2001 to March 2019 that is common to all (single-style and integrated) strategies.

Table 2, Panel A presents summary statistics for the excess returns of the futures contracts.

The annualized mean excess return averaged across contracts merely stands at -3.06% a year.

The risk profile of the contracts is high with, for example, annualized standard deviation and maximum drawdown that average 35.2% and -77% across assets. With the noticeable exception of ethanol and corroborating the evidence from 12 individual commodity futures markets of e.g., [START_REF] Erb | The strategic and tactical value of commodity futures[END_REF], the results confirm the poor risk-adjusted performance of energy futures contracts when treated as stand-alone investments. Indirectly, 8 Although the CoT dataset is widely used (e.g., [START_REF] Bessembinder | Systematic risk, hedging pressure, and risk premiums in futures markets[END_REF][START_REF] Hirshleifer | Residual risk, trading costs, and commodity futures risk premia[END_REF][START_REF] Basu | Capturing the risk premium of commodity futures: The role of hedging pressure[END_REF][START_REF] Kang | A tale of two premiums: the role of hedgers and speculators in commodity futures markets[END_REF], it has limitations. The classification of traders into commercials (hedgers) and non-commercials (speculators) is based on information provided by the traders themselves; large traders ought to declare the nature of their positions and any association with the physical market activities. One cannot rule out that some speculators might self-classify their activity as commercial to circumvent position limits, although the CFTC supervises the declarations seeking to correct any misclassifications. Moreover, futures market pundits have criticized the CFTC taxonomy of swap dealers (such as index trackers) as commercials. Swap dealers usually have no position in the physical commodity but instead their hedging is associated with over-the-counter (OTC) derivative positions. For further discussion see e.g., [START_REF] Ederington | Who trades futures and how: Evidence from the heating oil futures market[END_REF] and [START_REF] Irwin | Testing the Masters Hypothesis in commodity futures markets[END_REF].

this finding serves to highlight the need to adopt a long-short signal-sorted portfolio construction approach in energy markets, which is precisely the methodology that this paper advocates.

[Insert Table 2 around here] Table 2, Panel B reports averages for the sorting signals. As expected, we note a propensity for the futures with higher annualized mean returns (e.g., ethanol) to present backwardated characteristics such as higher roll-yields, higher hedging pressure (HP), higher speculative pressure (SP) and higher momentum signals. Vice versa, futures with lower annualized mean returns (e.g., natural gas) show signs of contango as demonstrated by lower roll-yields, lower HP, lower SP and lower momentum signals. This provides preliminary evidence that the signals employed are key to the pricing of energy contracts and thus potentially useful for asset allocation. The descriptive statistics confirm the stylized fact of the energy sector that crude oil futures by far lead the pack as the most liquid contracts. This may have some effect on the performance of the strategies via transaction costs (TC), which we investigate below.

For the TC analysis, we will employ information on the contract multiplier and minimum tick size per commodity futures contract, as shown in the Panel C of Table 2, from Refinitiv Datastream. 9

Empirical Results

Single-style portfolios

9 The contract multiplier ( also called contract size) is the total number of commodity units specified in each futures contract. The minimum tick (

) is the minimum price fluctuation of the futures contract per unit of the underlying commodity. Both are set by the corresponding futures exchange (e.g., NYMEX for light sweet crude oil) and vary by contract. For instance, a light sweet crude oil futures contract commits the holder to buy or sell 1,000 barrels of oil so the contract multiplier is 1,000 while the minimum tick is $0.01 per barrel. Accordingly, the dollar value of one tick of a light sweet futures contract is . [Insert Figure 1 around here] [Insert Table 3 around here]

Aligned with the predictions of the theory of storage of [START_REF] Kaldor | Speculation and economic stability[END_REF] and Working (1949), the TS risk premium is positive at 11.70% a year and statistically significant (t-statistic of 2.79). The corresponding Sharpe, Sortino and Omega ratios all confirm the superior performance of the TS strategy relative to many competing portfolios and stand-alone energy contracts. This indicates that backwardated contracts characterized by positive roll-yields and thus presumably low inventory levels outperform contangoed contracts characterized by negative roll-yields and thus presumably high inventory levels.

Likewise, corroborating the predictions of the hedging pressure hypothesis of [START_REF] Cootner | Returns to speculators: Telser vs. Keynes[END_REF] and [START_REF] Hirshleifer | Residual risk, trading costs, and commodity futures risk premia[END_REF][START_REF] Hirshleifer | Hedging pressure and future price movements in a general equilibrium model[END_REF], the HP and SP risk premia are positive at the 5% significance level or better, ranging from 7.58% a year for HP (t-statistic of 2.22) to 8.16% a year for SP (t-statistic of 2.79). 10 The corresponding Sharpe ratios stand at 0.57 and 0.65, respectively.

This shows that backwardated energy futures contracts characterized by net short hedgers tend to appreciate in value to entice net long speculation, while contangoed energy futures contracts characterized by net long hedgers tend to depreciate in value to entice net short speculation. To state this differently, hedgers in energy futures markets are willing to pay a premium of 7.58% a year to invite speculators to take on the price risk that they would like to get rid of. Speculators in turn demand a similarly sized premium of 8.16% as reward for the risk born.

The momentum portfolio generates a positive mean excess return equal to 13.28% a year with a t-statistic of 3.53 or a Sharpe ratio of 0.75. This remarkable performance reflects the fact that the momentum portfolio, like the TS, HP and SP portfolios, captures the phases of backwardation and contango [START_REF] Miffre | Momentum strategies in commodity futures markets[END_REF][START_REF] Gorton | The fundamentals of commodity futures returns[END_REF]. The value strategy earns an interesting Sharpe ratio at 0.32; yet, its mean excess return is statistically insignificant and its CER is negative at -3.19% a year. The risk premia associated with liquidity and skewness are insignificant, both statistically and economically.

The Keynesian hypothesis assumes that futures markets are normally backwardated. In the setting of [START_REF] Keynes | Treatise on Money[END_REF], energy producers are long the physical asset and willing to take a short hedge to reduce their exposure to potentially declining oil prices. To get rid of their price risk, they need to entice speculators to take the long side of the futures market and thus, futures prices have to rise with maturity. In other words, if the normal backwardation theory holds, long speculators shall earn a positive risk premium as compensation for bearing hedgers' price risk. In our setting, the AVG portfolio earns a mean excess return of -2.20% a year (t-statistic of -0.29) or a Sharpe ratio at -0.08, a poor performance that is reminiscent of that of individual energy contracts (c.f., Table 2). This poor performance reveals that the actual pricing of energy futures contracts does not support the normal backwardation theory of [START_REF] Keynes | Treatise on Money[END_REF]. Instead of long-only portfolios, investors ought to take simultaneous long and short positions in the cross-section of energy futures contracts to capture a sizeable risk premium.

Table 3, Panel B reports the Sharpe ratios of the long-short single-style and AVG portfolios over four non-overlapping subsamples of equal size, alongside relative rankings of performance ranging from 1 (for the best performing strategy) to 8 (for the worst performing strategy). We note some instability in the relative rankings over time. For example, the HP and value strategies rank both amongst the worst and best strategies depending on the subsample considered. This instability in relative rankings motivates style integration as a way to diversify risk by preempting the difficult choice of one signal over another one.

Table 4 provides pairwise Pearson correlations across the excess returns of the K single-sort styles. The excess returns of the TS, HP, SP and Mom portfolios have relatively high correlations ranging from 0.25 to 0.79 with an average at 0.44; this is expected as these individual styles are all deemed to capture the fundamentals of backwardation and contango.

The average correlations across individual-style portfolio returns is, however, low at 0.09 suggesting that integration could help achieve diversification benefits. The value portfolio, which is contrarian in nature, and the liquidity portfolio present negative return correlation with the other portfolios. This low dependence in the excess returns of the single-style portfolios motivates an integrated portfolio approach as a way of managing risk.

[Insert Table 4 around here] Table 5 shows that integration works: all integration techniques deliver positive mean excess returns that are significant at the 1% level. The corresponding Sharpe ratios range from 0.74 to 0.90 and are thus at worst equal to those obtained in Table 3 for the single-style portfolios.

Integrated portfolios

This serves to highlight the benefits of integration: by relying on a composite signal that aggregates information from various styles, the investor predicts more reliably subsequent price changes and is thus better able to capture the risk premium present in energy futures markets.

[Insert Table 5 and Figure 2 around here] EWI stands out among all the integration methods deployed with the highest mean excess return at 12.4% a year, the highest Sharpe and Omega ratios at 0.90 and 2.04, respectively, the second highest Sortino ratio at 1.28 and the highest CER at 7.36% a year. The efficacy of EWI to capture risk premia may be due to the fact that, unlike OI and VTI, it incurs no estimation uncertainty (the style-weight parameter is preset) and also it sidesteps representativeness heuristic bias (it does not rely on the persistence of the performance of the single styles).11 

To assess the statistical superiority of EWI relative to OI and VTI, we calculate the Opdyke (2007) p-value for the null hypothesis versus where j denotes an integrated portfolio other than EWI. In order to account for higher order moments of the return distribution, we also test the null hypothesis versus

. The p-values, reported in Table 5, Panel A, fail to reject the null hypothesis at conventional levels. 12 Statistically, the Sharpe ratio and CER of the EWI portfolio are at least as attractive as those of the OI and VTI portfolios.

Table 5, Panel B presents the Sharpe ratios of each integrated portfolio over four consecutive subsamples of equal size. It reports in parentheses the rank assigned to a given integrated portfolio in relation to the other 13 portfolios (AVG, 7 single-style portfolios and 5 alternative integrated portfolios). A rank of 1 ( 14) is assigned to the strategy with the highest (lowest) Sharpe ratio over a given sub-sample. These period-specific ranks are subsequently averaged across periods. The lower the average rank, the better the performance of the strategy under review. With an average rank at 3.5, EWI beats all competing integration approaches. Unreported results show that EWI also beats AVG and the single-style strategies of Table 3.

Robustness Tests

For the sake of completeness, we subject our key findings on the presence of an energy futures risk premium and on the superior performance of EWI to various robustness tests.

Turnover and transaction costs

Trading intensity erodes performance and could even potentially wipe out the profits of seemingly lucrative strategies. It is thus important to measure the turnover of the single-style and integrated portfolios; higher turnover indeed comes hand-in-hand with worse performance net of reasonable transaction costs. Bearing this in mind, we define the turnover of strategy j, , as the time average of all the trades incurred (4)

where is the weight assigned to the ith energy contract by the jth portfolio at time t (in the case of a single-style portfolio, ), is the weight of the ith contract before the next rebalancing at t+1, and is the excess return of the ith energy contract from to . Thus measures the natural evolution of the weights within the month as driven by the performance of the contract. Theoretically, the turnover measure ranges from 0 (should no trading occurs) to 2 (should all the long positions be reversed every month and likewise for the shorts). The results, reported in Table 6, show that with turnover ranging from 0.0972 (HP) to 0.3915 (Value), the strategies considered are not highly trading intensive and thus, it is unlikely that transaction costs will wipe out performance.

We then calculate the excess returns of each strategy after transaction costs as follows

(5)

with TC denoting a round-trip trading cost. While relatively patient energy futures traders willing to stagger the allocation of a $1 million wealth into futures positions within a 60minute window are prepared to pay up TCs of up to 6.7 b.p., demands for more immediate execution raise the transaction costs to 20 b.p. [START_REF] Marshall | Commodity liquidity measurement and transaction costs[END_REF]. Bearing their point in mind, it might be worth it to analyze whether the need for immediacy could harm performance so much that it deters traders from implementing the trades. The results, reported in Table 6, show that inferences regarding the presence of an energy risk premium and the superiority of EWI hold after transaction costs. For example, the risk premium based on the phases of backwardation and contango are still significant at the 5% level or better after accounting for transaction costs. EWI still offers the highest net mean excess returns and the highest net Sharpe ratio.

Finally, we perform a breakeven analysis that gives the transaction costs required for the mean excess return of a given strategy to be zero; namely, in the following equation , parameter that measures the number of times the dollar value of one tick is to be paid for the price impact of trading to wipe out the gross returns of the strategy. We solve Equation (6) for k, and calculate using Equation ( 7) with the commodity-specific information of the minimum tick and contract multiplier reported in Panel C of Table 2. The last column of Table 6 reports the average break-even cost in b.p. across time and energy commodities . These estimates suggest that the trading costs needed for the profits of Tables 3 and5 to be wiped out are extremely large. Specifically, it would require costs that are 56 times and 19 times the 6.7 b.p. and 20 b.p. estimates of [START_REF] Marshall | Commodity liquidity measurement and transaction costs[END_REF], respectively, to wipe out the attractive gross profits of the TS, HP, SP and Mom strategies (Table 3) and those of the integrated strategies (Table 5). We can safely conclude that the risk premia extracted by the portfolio strategies proposed are not an artefact of transaction costs. 13[Insert Table 6 around here]

Alternative specifications of the weighting schemes

Thus far, we followed the literature (see e.g., [START_REF] Asness | Value and momentum everywhere[END_REF] in forming balanced longshort portfolios that invest 50% of the investor's mandate in long positions and the remainder 50% in short positions. This could result in long positions being taken at time t in, for example, contangoed contracts (shall most or all contracts be in contango) and short positions being taken in, for example, backwardated contracts (shall most or all contracts be in backwardation). We test whether such occurrence impacts our general conclusions on performance by using as asset allocation criterion the actual signal k of commodity i at time t, (e.g., the roll-yield), instead of . We then buy the energy futures contracts whose prices are expected to rise (allocation weights ) and short the energy futures contracts whose prices are expected to drop (allocation weights

) such that with denoting the size of the entire cross-section. Since in this case we use directly the (non-standardized) signal which is therefore not centered, the implication is that we no longer have a balanced portfolio, namely where and We invest in each contract i at portfolio formation time t so that the mandate is fully collateralized ( . Therefore, at each month end (time t) over the sample period this asset allocation could be 100% long (when ), 100% short (when )

or any long-short in between (when and ). Proceeding likewise for all signals,

we end up with six portfolios sorted on single styles. We omit the liquidity-sorted portfolio whose signal is by definition always negative. The style-integrated portfolios are formed as before but using the non-standardized signals. p.a. for the portfolios with weights given by the standardized signals (Tables 3 and5). The corresponding average Sharpe ratios are 0.18 and 0.61, respectively.

[Insert Table 7 around here]

We attribute the notably smaller risk premia captured by the long-short portfolios based on non-standardized signals to the fact that these portfolios are not market neutral, i.e., they do not capture a signal-based risk premium that is actually immune to market movements. To show this, we regress the excess returns of the portfolios sorted on non-standardized signals onto the excess returns of the AVG portfolio. We do likewise for the excess returns of the portfolios sorted on standardized signals. Table 7, Panels B and C present the estimated parameters and goodness-of-fit statistics of these regressions. As anticipated, the portfolios based on non-standardized signals are not market neutral: the AVG slope in Table 7, Panel B is significant at the 5% level or better for all the single-style portfolios but momentum with an average adjusted-R 2 across single-styles of 0.21; it is also significant at the 10% level for most of the style-integrated portfolios. The intercept or alpha (performance over and above the market) is insignificant for all single-and style-integrated portfolios. The smaller risk premia stemming from the portfolios in Panel A is therefore driven by the poor performance of AVG (Table 3). Likewise, the style-integrated portfolios based on non-standardized signals capture a much smaller risk premia than the corresponding style-integrated portfolios based on standardized signals. In sharp contrast, the portfolios sorted on standardized signals (Table 7, Panel C) are market neutral: the slope coefficients are insignificant for all the single-style and style-integrated portfolios with a negligible average adjusted-R 2 . The alphas are significant at the 5% level or better for all the single-style portfolios but value and skewness, and the style-integrated portfolios. Thus, the portfolios based on standardized signals capture a larger signal-based risk premia because they are immune to general energy futures market movements.

In another exercise, we study the performance of alternative formulations of the OI and VTI portfolios; thereby testing the robustness of our conclusion regarding the superiority of EWI.

Thus far, we restricted in Equation ( 1) for the optimized integration approaches (OI(PU), OI(Exp), OI(MV) and OI(Var)). We now allow to be freely estimated. A negative for the kth style at time t implies that the integrated portfolio effectively reverses the weights of the original kth style. Taking momentum as example, this implies that at time t we give larger positive (negative) weights to assets with poorer (better) past performance, a strategy that makes sense during large momentum drawdowns.

Our earlier VTI approach inspired by [START_REF] Kirby | It's all in the timing: Simple active portfolio strategies that outperform naïve diversification[END_REF] forced in the following specification of the style weights to be equal to 1 and only considered , the volatility of the excess returns of the kth-style portfolio, as criterion for style allocation. We now consider two alternative VTI specifications. The first one, labelled VTI( ), allocates more wealth to the least volatile styles; this is done by setting to 4 in the following equation ( 8) while the second specification, labelled VTI( ), considers both performance and volatility as criteria for style allocation as formalized by ( 9)

where and is the mean excess return of the kth style. A 60-month window is used to estimate and in all these alternative formulations of the OI and VTI portfolios. The results in Table 8 reveal that none of these alternatives outperforms EWI.

Thus, the style-integration that ascribes equal weights to all signals is confirmed as the best approach.

[Insert Table 8 around here]

Data mining

Our conclusion thus far is that EWI outperforms the 19 alternative strategies considered: the AVG portfolio, the 7 single-style (SS) strategies, , the 8 OI specifications and the 3 VTI specifications, (i.e., the integrated portfolios reported in Tables 5 and8). Is this a result of data snooping? 14 We use the Superior Predictive Ability test of [START_REF] Hansen | A test for superior predictive ability[END_REF] based on Sharpe ratio differences to address this issue.

We treat EWI as benchmark and compare the Sharpe ratios of the 19 underperforming portfolios to that of EWI. Let SR m denote the Sharpe ratio of strategy and the Sharpe ratio of EWI. Relative performance is measured by the Sharpe ratios differential, . The expected "loss" of the mth strategy relative to the benchmark is therefore . Strategy m is better in terms of Sharpe ratio than the benchmark (EWI) if and only if

. The null hypothesis is that the best of the strategies does not obtain a superior Sharpe ratio than the Sharpe ratio of the EWI benchmark; i.e.,

.

Using the bootstrap method of [START_REF] Politis | The stationary bootstrap[END_REF], we obtain 10,000 bootstrap timeseries of excess returns for the EWI benchmark and for the 19 underperforming portfolios by pooling random blocks from the original time-series of excess returns. The length of each sample block follows a geometric distribution with expected value 1/p with p Subsequently, we obtain 10,000 pseudo values for for each of the strategies. The p-values of 0.9772 (p=0.2) and 0.9725 (p=0.5) clearly show that the null hypothesis cannot be rejected. Altogether, we conclude that the superiority of the EWI portfolio cannot be attributed to data snooping.

Subsample analysis

Finally, we test whether the results are sample specific by re-evaluating the performance of the single and integrated energy portfolios over different sub-periods defined as follows: i) high versus low volatility in energy futures markets where the volatility is modelled by fitting a GARCH(1,1) model to the excess returns of AVG 15 , ii) pre and post the financialization of commodity futures markets roughly dated January 2006 [START_REF] Stoll | Commodity index investing and commodity futures prices[END_REF], iii) in periods of recession and expansion according to the NBER-dated business cycle phases, and iv) over the bust of the 2008 oil price bubble (July 2008 -February 2009) 16 versus the rest of 15 The threshold to separate the high and low volatility regimes is defined as the average of the annualized fitted volatility estimated at 27.6%. 16 The bust of the 2008 oil price bubble had a remarkable effect in energy futures. For instance, the AVG portfolio lost 13.47% a month from July 2008 to February 2009. (Skewness) to 3.34 (OI(Var)). 17 Most importantly, the integrated portfolios deliver positive Sharpe ratios in all sub-samples; the conclusion holds irrespective of the integration approach considered. Altogether, the table further highlights the benefits of style-integrated long-short portfolios as they are able to capture sizeable energy risk premia irrespective of market conditions.

[Insert Table 9 around here]

Conclusions

The theory of storage of [START_REF] Kaldor | Speculation and economic stability[END_REF], Working (1949) and [START_REF] Brennan | The supply of storage[END_REF] and the hedging pressure hypothesis of [START_REF] Cootner | Returns to speculators: Telser vs. Keynes[END_REF] and [START_REF] Hirshleifer | Residual risk, trading costs, and commodity futures risk premia[END_REF][START_REF] Hirshleifer | Hedging pressure and future price movements in a general equilibrium model[END_REF] suggest that the state of the commodity futures market, backwardation versus contango, contains predictive ability for commodity futures prices. This article examines the ability to extract energy risk premia of long-short portfolios formed according to various futures contract characteristics that proxy the backwardation and contango dynamics such as the roll-yield, hedging pressure and 17 A reassuring finding is that over the bust period of the oil bubble the long-short portfolios formed according to the HP and SP signals motivated by the hedging pressure hypothesis still capture sizeable risk premia. For instance, the mean excess return of the SP portfolio is 2.17% per month (26.04% p.a.) and a Sharpe ratio of 1.10 suggesting that the risk transfer mechanism was at play also during this challenging periodnamely, speculators earned a significant premium of 2.17% per month (26.04% p.a.) for shouldering the price risk that hedgers sought to avoid. The results of a similar exercise over January 2008 to February 2009 which spans the boom and bust components of the bubble are qualitatively similar.

momentum inter alia. The energy risk premia thus captured ranges from a sizeable 7.58% to 13.28% a year with Sharpe ratios of 0.65 to 0.75. Jointly exploiting the backwardation versus contango signals (and other signals such as liquidity, value and skewness) into a long-short integrated portfolio increases the Sharpe ratio further to 0.90. The findings hold after accounting for trading costs, alternative designs of the integrated portfolio, data snooping tests and economic sub-periods.

Our empirical findings serve to endorse the theory of storage and hedging pressure hypothesis in the specific energy futures sector. From a regulatory perspective, the ability to extract a significant energy risk premium through a long-short portfolio formed according to the hedging pressure characteristic reveals that an effective risk transfer mechanism from hedgers to speculators is at play in the energy futures sector. This empirical finding indirectly suggests that calls for further regulation of speculative activity are unwarranted at this stage.

From a practitioners' perspective, our paper proposes long-short strategies that can inspire the design of energy-based smart-beta index products and thus are relevant for asset management practice. The first column lists the style, the second and third columns report the signal or characteristic of the underlying asset used to construct the longshort portfolios (a higher indicates a higher expectation of a futures price increase), and the last column summarizes the background literature. Panel B reports the annual Sharpe ratio of each integrated portfolio over non-overlapping subsamples of equal size and the number in parenthesis represents the relative ranking; a ranking of 1 to 14 (with 14 denoting the total number of portfolio strategies summarized in Tables 3 and5) is assigned to the strategy according to the Sharpe ratio where 1 denotes highest. 

Style

Table 6. Turnover and net Sharpe ratio of single-style and integrated portfolios

The table presents the portfolio turnover, the annualized mean excess returns, associated Newey-West t-statistic and Sharpe ratio (SR) net of 6.7 (20) basis point (bp) proportional transaction costs (TC) and the breakeven TC (expressed in bp) that set the mean return of the strategy equal zero. TS is term structure, HP is hedging pressure, SP is speculative pressure, Mom is momentum, EWI is equally-weighted integration, OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is volatility-timing integration. N/A for the skewness style refers to the fact that the breakeven TCs are not defined as this style earns a negative mean excess return over the sample period under consideration. The sample covers the period from July 2001 to March 2019. The table reports summary statistics for integrated portfolios under various choices for where is the vector of weights that defines the allocation of the integrated portfolio to the K single-style portfolios. EWI is equally-weighted integration. OI is optimal integration with power utility OI(PU), exponential utility OI(Exp), mean-variance utility OI(MV) and variance minimization OI(Var), the OI approach now allows for free weights ( ). VTI is volatility-timing integration with volatility aggressiveness ( and style performance (µ). Mean and standard deviation (StDev) are annualized. Newey-West robust t-statistics are shown in parenthesis for the mean. CER is annualized certainty-equivalent return with power utility preferences (

). The asymptotic p-values of the [START_REF] Opdyke | Comparing Sharpe ratios: So, where are the p-values?[END_REF] 

Table 9. Economic sub-period analysis

The table reports the annualized Sharpe ratio of the long-only baseline AVG portfolio (Panel A) and of each long-short portfolio (Panels B and C) over various sub-periods: high versus low volatility regimes, pre-versus post-financialization (dated on January 2006), NBERdated recession and expansion periods, and the 2008 oil price bubble-bust period (July 2008-February 2009) versus the remaining of the sample (Other). TS is term structure, HP is hedging pressure, SP is speculative pressure, Mom is momentum, EWI is equally-weighted integration, OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is volatility-timing integration. EWI is equally-weighted integration, OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is volatility timing integration.

(

  2015), Fitzgibbons et al. (2016) and Fernandez-Perez et al. (2019), . Namely, the integrated portfolio simply gives equal weights to the K style portfolios. Optimized integration (OI): This alternative specification of follows from Brandt et al. (2009), Fischer and Gallmeyer (2016), Ghysels et al. (2016) and DeMiguel et al. (2020). The weights assigned to each of the individual style portfolios are obtained by maximizing at time t the expected utility of the excess returns of the integrated portfolio P at time t+1 with respect to the weights assigned to the K single-style portfolios. Formally,

Figure 1

 1 Figure 1 plots the evolution of $1 invested in the single-style and AVG portfolios where

10

  The risk premia captured by the HP and SP strategies needs not be identical since the hedgers and speculators' open positions used to construct the underlying signals, obtained from the Commitment of Traders (CoT) report of the Commodity Futures Trading Commission (CFTC), do not represent the total of open positions but only those of large traders that ought to report their positions to the CFTC (referred to as reportables). If large traders covered the 100% of the open interest instead, the HP and SP signal would be perfectly positively correlated because for every long position there is a matching short position, and the HP and SP premia would then be identical as the commodities ranking (by the HP and SP signals) would coincide.

Figure 2

 2 Figure 2 plots the future value of $1 invested in June 2001 in various fully-collateralized

  where following[START_REF] Szakmary | Trend-following trading strategies in commodity futures: A re-examination[END_REF] and Paschke et al. (2020) inter alia, heterogeneity in the transaction costs across energy futures contract at time t is allowed wisdom that commodity futures trading costs are a function of the: a) minimum tick of the ith contract ( ), b) contract size or contract multiplier ( ), c) time t settlement price ( ), d) a brokerage fee of roughly $10 (Pashke et al., 2020), and e) a

  the sample. Table 9 reports the Sharpe ratios of the single-style strategies in Panel A and those of the integrated strategies in Panel B. The single-style risk premia based on backwardation and contango are often robust to the sub-sample considered; yet, they are found to be stronger in periods of expansion and since the financialization of commodity futures markets. Over the period spanning the bust of the 2008 oil price bubble (July 2008 to February 2009), all the long-short portfolios present positive Sharpe ratios ranging from 0.18

  basis defined as difference in daily log prices of frontend contract (T1) and next maturity (T2) contract on average over the past year (D = number of trading days within the past year)[START_REF] Kaldor | Speculation and economic stability[END_REF],Working (1949),[START_REF] Brennan | The supply of storage[END_REF],[START_REF] Cho | The supply of storage in energy futures markets[END_REF],[START_REF] Serletis | Business cycles and the behavior of energy prices[END_REF],[START_REF] Alquist | What do we learn from the price of crude oil futures?[END_REF],[START_REF] Pindyck | The dynamics of commodity spot and futures markets: A primer[END_REF], Szymanowska et al. (2014), Gorton et al. (2013), Byun (2017), Koijen et al. (2018) Hedging pressure (HP) Standardized weekly net open interest of hedgers (short positions minus long positions over total positions) on average over the past year (W = number of weeks within the previous year) Cootner (1960), Hirshleifer (1988), Sanders et al. (2004), Basu and Miffre (2013), Dewally et al. (2013), Kang et al. (2020) Speculative pressure (SP) Standardized weekly net open interest of speculators (long positions minus short positions over total positions) on average over the past year (W = number of weeks within the previous year) Cootner (1960), Hirshleifer (1988), Sanders et al. (2004), Bessembinder (1992), Basu and Miffre (2013), Dewally et al. (2013), Fattouh et al. (2013) Momentum (Mom) Average excess daily return of the commodity over the past year (D = number of trading days within the past year) Erb and Harvey (2006), Miffre and Rallis (2007), Asness et al. (2013) Panel B: Styles that are pervasive sources of risk across asset classes Value Log of the average daily front-end futures prices 4.5 to 5.5 years ago divided by the log front-end futures price at time t (D = number of trading days within the year) Asness et al. (2013) Liquidity Minus Amivest measure of liquidity or dollar daily volume over absolute daily return during the prior 2 months of daily observations (D = number of trading days within the past 2 months) Amihud et al. (2005), Marshall et al. (2012), Szymanowska et al. (2014), Koijen et al. (2018) Skewness Minus third moment of daily return distribution over the previous year of daily observations (D = number of trading days within the past year) Amaya et al. (2015), Chiang (2016), Fernandez-Perez et al. (2018)

Figure 1 .

 1 Figure 1. Future value of $1 invested in long-only and long-short single-style energy portfoliosTS is term structure, HP is hedging pressure, SP is speculative pressure, Mom is momentum.

Figure 2 .

 2 Figure 2. Future value of $1 invested in long-short integrated portfolios

Table 3 ,

 3 

Panel A summarizes the performance of the single-style and AVG portfolios over the full period. The reported statistics center around various measures of performance (annualized mean excess return), risk (annualized standard deviation, annualized downside volatility, departure from normality, 99% Cornish-Fisher VaR and maximum drawdown) and risk-adjusted performance (Sharpe, Sortino and Omega ratios and certainty equivalent return, CER).

Table 7 ,

 7 Panel A, presents summary statistics for the performance of the modified portfolios. The risk premia captured by these portfolios is notably inferior to that stemming from our portfolios based on standardized signals,

; this standardized-signal approach has become typical since the seminal paper of

[START_REF] Brandt | Parametric portfolio policies: Exploiting characteristics in the cross-section of equity returns[END_REF]

. For example, the mean excess returns of the portfolios based on the non-standardized signals is 4% p.a. on average (Table

7

, Panel A) versus 8.58%

Table 1 . Individual investment styles.

 1 Szymanowska, M., De Roon, F., Nijman, T., and Van Den Goorbergh, R., 2014. An anatomy of commodity futures risk premia. Journal of Finance 69, 453-482Tang, K. and W., Xiong, 2012, Index investment and financialization of commodities.
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	Tversky, A., and Kahneman, D., 1974. Judgments under uncertainty: Heuristics and biases.
	Science, 185, 1124-1131
	Working, H., 1949. The theory of price of storage. American Economic Review 39, 1254-
	1262

Table 2 . Summary statistics for energy futures and signals

 2 Panel A presents summary statistics for long-only positions in individual energy futures contracts. Mean and standard deviation (StDev) are annualized. Newey-West significance tstatistics are reported in parentheses. Panel B shows the mean of each signal as defined in Table1. The signals are based on the slope of the term structure (TS), hedging pressure (HP), speculative pressure (SP), past performance or momentum (Mom), value, Amivest liquidity measure (liquidity) and skewness. The signals are measured so that higher values indicate expectation of higher excess returns. Panel C reports the futures exchange or futures market where the contract is traded -New York Mercantile Exchange (NYMEX), Intercontinental Exchange (ICE) or Chicago Board of Trade (CBOT) -, the contract multiplierexpressed as barrels (bbl), gallons (gal), metric million British thermal units (MMBtu), megawatt-hour (MWh) or metric tons (mt)and minimum tick size per commodity futures contract for the transaction cost analysis. The start and end of the sample period are shown in the last two rows.

		Brent crude		Light sweet				RBOB		Electricity	
		oil	Heating oil	crude oil	WTI crude oil Natural gas	Ethanol	gasoline	Unleaded gas	PJM	Coal
	Panel A: Excess returns										
	Mean	-0.0532	0.0181	-0.0200	-0.1155	-0.2991	0.2678	-0.0138	0.1904	-0.1809	-0.1002
		(-0.42)	(0.22)	(-0.22)	(-1.01)	(-2.68)	(2.63)	(-0.13)	(1.39)	(-1.15)	(-1.31)
	StDev	0.3212	0.2993	0.3160	0.3214	0.4652	0.3485	0.3264	0.3698	0.4974	0.2541
	99% VaR (Cornish-Fisher)	0.3054	0.2380	0.2664	0.2879	0.3776	0.1843	0.3348	0.2398	0.4071	0.2072
	Maximum drawdown	-0.8317	-0.8205	-0.9034	-0.9034	-0.9974	-0.4083	-0.6980	-0.3764	-0.9351	-0.8270
	Sharpe ratio	-0.1655	0.0603	-0.0633	-0.3594	-0.6429	0.7683	-0.0422	0.5148	-0.3636	-0.3945
	Panel B: Average signals										
	TS	-0.0043	-0.0026	-0.0041	-0.0081	-0.0211	0.0185	-0.0011	0.0075	-0.0077	-0.0063
	HP	-0.3478	0.0627	0.0982	0.0534	-0.0875	0.1539	0.1731	0.1037	0.0747	0.0840
	SP	-0.3618	0.1322	0.2391	0.2720	-0.2256	0.4034	0.5260	0.3979	0.5179	0.6812
	Mom	-0.0055	0.0194	-0.0199	-0.1183	-0.3122	0.2857	-0.0346	0.1226	-0.1764	-0.0949
	Value	0.2376	-0.3130	-0.2667	0.1586	0.0008	0.1679	0.0623	-0.5570	0.2796	0.0545
	Liquidity	-2.2489	-0.1056	-24.8532	-7.0468	-0.4862	-0.0021	-0.1571	-0.0339	-0.0709	-0.0885
	Skewness	0.2049	0.0925	0.1867	0.0805	-0.0623	0.1021	0.1637	0.2209	0.1515	0.4991
	Panel C: Other information										
	Exchange	NYMEX	NYMEX	NYMEX	ICE	NYMEX	CBOT	NYMEX	NYMEX	NYMEX	NYMEX
	Contract multiplier	1,000bbl	42,000gal	1,000bbl	1,000bbl 10,000MMBtu	29,000gal	42,000gal	42,000gal	40MWh	1,550mt
	Minimum tick	$0.01	$0.0001	$0.01	$0.01	$0.001	$0.001	$0.0001	$0.0001	$0.05	$0.01
	Sample start	30/07/2007 31/12/1990 31/12/1990	3/02/2006 31/12/1990 30/03/2006 20/10/2005 31/12/1990 22/03/2004 22/03/2004
	Sample end	29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/03/2019 29/12/2006 21/08/2015 25/11/2016

Table 3 . Performance of single-style portfolios

 3 The table summarizes the performance of K=7 long-short single-style portfolios based on the following signals: the slope of the term structure (TS), hedging pressure (HP), speculative pressure (SP), momentum (Mom), value, liquidity or skewness. AVG stands for a long-only equally-weighted and monthly-rebalanced portfolio of all energy futures. The portfolios are fully collateralized and held for one month. Panel A reports statistics for the monthly portfolio excess returns over the full sample period from July 2001 to March 2019. Mean and standard deviation (StDev) are annualized. Significance t-statistics are reported in parentheses and are Newey-West adjusted for the mean. CER is the annualized certaintyequivalent return based on power utility preferences (). Panel B reports the annual Sharpe ratio of each style over non-overlapping subsamples of equal size and the number in parenthesis represents the relative ranking; a ranking of 1 (8) is assigned to the strategy with the highest (lowest) Sharpe ratio.

	Mean	0.1170	0.0758	0.0816	0.1328	0.0620	0.0132	-0.0029	-0.0220
		(2.79)	(2.22)	(2.79)	(3.53)	(1.16)	(0.45)	(-0.08)	(-0.29)
	StDev	0.1828	0.1335	0.1256	0.1765	0.1957	0.1089	0.1749	0.2658
	Skewness	-0.0627	0.2752	-0.4036	-0.1460	0.2874	0.4066	-0.4732	-0.2836
		(-0.37)	(1.64)	(-2.40)	(-0.87)	(1.71)	(2.42)	(-2.82)	(-1.69)
	Excess Kurtosis	1.5054	2.8693	3.4324	1.5075	0.8548	0.5792	0.5529	1.1571
		(4.48)	(8.55)	(10.23)	(4.49)	(2.55)	(1.73)	(1.65)	(3.45)
	JB normality test p -value	0.0024	0.0010	0.0010	0.0022	0.0171	0.0196	0.0127	0.0057
	Downside volatility (0%)	0.1213	0.0871	0.0964	0.1185	0.1143	0.0596	0.1270	0.1876
	99% VaR (Cornish-Fisher)	0.1339	0.1003	0.1152	0.1305	0.1238	0.0649	0.1376	0.2148
	% of positive months	56.81%	55.87%	61.03%	58.22%	53.99%	45.54%	53.52%	52.11%
	Maximum drawdown	-0.2945	-0.2597	-0.2775	-0.3168	-0.6753	-0.2735	-0.3805	-0.8060
	Sharpe ratio	0.6403	0.5676	0.6498	0.7524	0.3168	0.1214	-0.0165	-0.0829
	Sortino ratio (0%)	0.9648	0.8706	0.8466	1.1213	0.5426	0.2218	-0.0227	-0.1174
	Omega ratio	1.6422	1.5996	1.6873	1.8002	1.2707	1.0943	0.9878	0.9391
	CER	0.0317	0.0315	0.0402	0.0524	-0.0319	-0.0157	-0.0855	-0.2266
	Panel B:								

Sharpe ratio (relative ranking) of single-sort strategies over non-overlapping subsamples of equal size

  

			Backwardation and contango risk premia	Other long-short risk premia
			SP	Mom	Skewness	AVG
	Panel A:				
	Jul-01	Nov-05	-0.1344 (6) 0.3885 (4) 0.2368 (5) 1.0300 (2)	1.3555 (1) -0.2288 (8) -0.2037 (7)	0.5729 (3)
	Dec-05 Apr-10	1.0838 (2) 0.7753 (4) 1.3964 (1) 0.9685 (3)	-0.5941 (8) -0.3767 (6) 0.2116 (5)	-0.5271 (7)
	May-10 Sep-14	0.9793 (1) 0.8723 (2) 0.7481 (4) 0.7780 (3)	0.0019 (7) 0.5758 (5) -0.0953 (8)	0.2234 (6)
	Oct-14 Mar-19	0.5995 (2) 0.0236 (7) 0.1731 (5) 0.1770 (4)	0.7400 (1) 0.5301 (3) 0.0335 (6)	-0.6210 (7)
	Mean ranking				(5.75)

Performance over entire sample July 2001-Mar 2019

  

	TS	HP			Value	Liquidity	
	(2.75)	(4.25)	(3.75)	(3.00)	(4.25)	(5.50)	(6.50)

Table 5 . Performance of integrated portfolios

 5 Panel A reports summary statistics for the monthly excess returns of integrated style portfolios over the sample period from July 2001 to March 2019. EWI is equally-weighted integration, OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is volatility-timing integration. Mean and standard deviation (StDev) are annualized. Newey-West robust t-

	statistics are shown in parenthesis for the mean. CER is annualized certainty-equivalent
	return with power utility preferences (	). The asymptotic p-values of the Opdyke (2007)
	test are for	versus	where j is an integrated portfolio
	other than EWI. The bootstrap p-values of the CER test are for	versus
	.		

Panel B: Sharpe ratio (relative ranking) of integrated strategies over 4 non-overlapping subsamples of equal size

  

				Optimized integration (OI)	
			EWI	OI(PU)	OI(Exp)	OI(MV)	OI(Var)	VTI
	Panel A:						
	Mean		0.1238	0.1159	0.1146	0.1076	0.0846	0.0894
			(4.05)	(4.06)	(4.01)	(3.54)	(2.99)	(3.24)
	StDev		0.1375	0.1394	0.1397	0.1448	0.1111	0.1105
	Skewness		-0.3452	-0.2590	-0.2780	-0.5989	-0.5098	0.0207
			(-2.06)	(-1.54)	(-1.66)	(-3.57)	(-3.04)	(0.12)
	Excess Kurtosis	2.7249	4.0610	4.1028	5.4093	6.3952	2.0522
			(8.12)	(12.10)	(12.22)	(16.11)	(19.05)	(6.11)
	JB normality test p -value	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	Downside volatility (0%)	0.0965	0.1023	0.1031	0.1141	0.0810	0.0673
	99% VaR (Cornish-Fisher)	0.1156	0.1288	0.1301	0.1539	0.1244	0.0815
	% of positive months	61.50%	61.50%	61.97%	0.6197	60.09%	60.09%
	Maximum drawdown	-0.2232	-0.2135	-0.2161	-0.2690	-0.2863	-0.2335
	Sharpe ratio	0.9002	0.8311	0.8199	0.7429	0.7613	0.8096
	Opdyke test p -value (H 0 : SR EWI -SR j ≥0)	-	0.6519	0.6754	0.8265	0.7436	0.7204
	Sortino ratio (0%)	1.2824	1.1321	1.1115	0.9429	1.0435	1.3288
	Omega ratio	2.0351	1.9759	1.9570	1.8472	1.8666	1.8582
	CER		0.0736	0.0645	0.0629	0.0501	0.0515	0.0582
	CER bootstrap p -value (H 0 : CER EWI -CER j ≥0)	-	0.7483	0.7827	0.9290	0.9017	0.9018
	Jul-01	Nov-05	0.7041 (7)	1.2692 (2)	1.2665 (3) 1.2572 (4) 0.7730 (6)	0.4916 (9)
	Dec-05 Apr-10	1.1100 (2)	0.6476 (10)	0.6487 (8) 0.6479 (9) 0.8394 (6)	0.9692 (4)
	May-10 Sep-14	1.2013 (2)	0.7481 (10)	0.8723 (8) 0.7780 (9) 1.0422 (6)	1.1548 (4)
	Oct-14 Mar-19	0.5995 (3)	0.5632 (4)	0.5301 (5) 0.5075 (6) 0.7400 (1)	0.6122 (2)
	Mean ranking	(3.50)	(6.50)	(6.00)	(7.00)	(4.75)	(4.75)

Performance over entire sample July 2001-Mar 2019

  

Table 7 . Performance of portfolios based on non-standardized weighting schemes

 7 The table summarizes the performance of long-short single-style and integrated portfolios under a non-standardized weighting scheme based on the following signals: the slope of the term structure (TS), hedging pressure (HP), speculative pressure (SP), momentum (Mom), value, or skewness. EWI is equally-weighted integration, OI is optimal integration with power utility (PU), exponential utility (Exp), mean-variance utility (MV) and variance minimization (Var), VTI is volatility-timing integration. The portfolios are fully collateralized and held for one month. AVG stands for a long-only equally-weighted and monthly-rebalanced portfolio of all energy futures. Panel A reports statistics for the monthly portfolio excess returns. Mean and standard deviation (StDev) are annualized. Significance tstatistics are reported in parentheses and are Newey-West adjusted for the mean. CER is the annualized certainty-equivalent return based on power utility preferences (). Panel B (Panel C) reports the annualized alpha, market beta and adjusted-R 2 for a regression of the excess returns of the portfolio at hand based on the non-standardized (standardized) weighting scheme on a constant and the excess returns of the AVG portfolio. Newey-West adjusted t-statistics are reported in parenthesis. The sample period from July 2001 to March 2019.

	TS	HP	SP	Mom	Value	Skewness	EWI	OI(PU)	OI(Exp) OI(MV) OI(Var)	VTI
	Panel A:									

Risk and performance of the portfolios based on non-standardized weighting scheme

  

	Mean	0.0494	0.0590	0.0356	0.0812	0.0348	-0.0281	0.0293	0.0554	0.0554	0.0568	0.0411	0.0124
		(0.77)	(0.92)	(0.64)	(1.44)	(0.44)	(-0.47)	(0.74)	(1.10)	(1.10)	(1.15)	(0.77)	(0.28)
	StDev	0.2471	0.2537	0.2239	0.2589	0.2782	0.2268	0.1739	0.2031	0.2027	0.2005	0.2133	0.1749
	Sharpe ratio	0.1999	0.2327	0.1592	0.3138	0.1251	-0.1238	0.1687	0.2731	0.2735	0.2831	0.1927	0.0710
	Sortino ratio (0%)	0.2857	0.2824	0.1967	0.4885	0.2346	-0.1555	0.2121	0.4394	0.4382	0.4421	0.3041	0.0806
	Omega ratio	1.1659	1.2193	1.1355	1.2689	1.0963	0.9087	1.1402	1.2311	1.2317	1.2429	1.1578	1.0597
	CER	-0.1032 -0.1019 -0.0897 -0.0863 -0.1587	-0.1567	-0.0463 -0.0476 -0.0473 -0.0437 -0.0726 -0.0641
	Panel B:												

Market neutrality of the portfolios based on non-standardized weighting scheme

  

	Annualized alpha	0.0428	0.0725	0.0471	0.0840	0.0236	-0.0220	0.0311	0.0505	0.0506	0.0523	0.0362	0.0159
		(0.68)	(1.50)	(1.21)	(1.61)	(0.38)	(-0.44)	(0.84)	(1.13)	(1.13)	(1.17)	(0.76)	(0.42)
	b(AVG)	-0.2996	0.6116	0.5194	0.1248 -0.5092	0.2772	0.0780 -0.2229 -0.2198 -0.2025 -0.2227	0.1588
		(-2.39)	(4.79)	(4.33)	(0.82)	(-3.36)	(2.13)	(0.75)	(-1.89)	(-1.86)	(-1.72)	(-1.67)	(1.51)
	Adj-R²	0.10	0.41	0.38	0.01	0.23	0.10	0.01	0.08	0.08	0.07	0.07	0.05

Panel C: Market neutrality of the portfolios based on standardized weighting scheme

  

				Single-style portfolios				Style-integrated portfolios		
	Annualized alpha	0.1148	0.0764	0.0800	0.1323	0.0616	-0.0040	0.1287	0.1310	0.1306	0.1303	0.0899	0.1032
		(2.86)	(2.20)	(2.77)	(3.68)	(1.16)	(-0.11)	(4.37)	(4.70)	(4.69)	(4.67)	(3.15)	(3.63)
	b(AVG)	-0.0985	0.0259 -0.0727 -0.0239 -0.0175	-0.0512	-0.0528 -0.0461 -0.0453 -0.0409 -0.0092 -0.0299
		(-1.57)	(0.55)	(-1.65)	(-0.41)	(-0.26)	(-0.76)	(-1.12)	(-0.98)	(-0.96)	(-0.85)	(-0.22)	(-0.72)
	Adj-R²	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 8 . Integrated portfolios based on alternative style weights

 8 

  test are for versus where j is an integrated portfolio other than EWI. The bootstrap p-values of the CER test are for versus . The sample covers the period from July 2001 to March 2019.

				OI			VTI	
		EWI	OI(PU) OI(Exp) OI(MV) OI(Var)	VTI(η)	VTI(μ)
	Mean	0.1238	0.0543	0.0531	0.0506	0.0805	0.0461	0.1250
		(4.05)	(2.13)	(2.10)	(2.02)	(2.81)	(1.69)	(3.49)
	StDev	0.1375	0.1319	0.1312	0.1290	0.1070	0.1022	0.1672
	Skewness	-0.3452	-0.2871 -0.2948 -0.3444	0.3418	0.1944 -0.3954
		(-2.06)	(-1.71)	(-1.76)	(-2.05)	(2.04)	(1.16)	(-2.36)
	Excess Kurtosis	2.7249	4.1296	4.1965	4.3631	3.1853	2.0365	2.5669
		(8.12)	(12.30) (12.50) (13.00)	(9.49)	(6.07)	(7.65)
	JB normality test p -value	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010
	Downside volatility (0%)	0.0965	0.1022	0.1013	0.0989	0.0634	0.0630	0.1233
	99% VaR (Cornish-Fisher)	0.1156	0.1277	0.1278	0.1282	0.0790	0.0742	0.1420
	% of positive months	61.50%	58.22% 57.75%	0.5728 61.03%	54.46%	59.62%
	Maximum drawdown	-0.2232	-0.2700 -0.2715 -0.2553 -0.2753	-0.2610 -0.2901
	Sharpe ratio	0.9002	0.4116	0.4052	0.3919	0.7520	0.4513	0.7473
	Opdyke test p -value (H 0 : SR EWI -SR j ≥0)	-	0.9842	0.9855	0.9894	0.7478	0.9628	0.8335
	Sortino ratio (0%)	1.2824	0.5315	0.5243	0.5110	1.2686	0.7318	1.0132
	Omega ratio	2.0351	1.4146	1.4062	1.3913	1.8231	1.4110	1.8223
	CER	0.0736	0.0090	0.0083	0.0070	0.0518	0.0202	0.0504
	CER bootstrap p -value (H 0 : CER EWI -CER j ≥0)	-	0.9911	0.9924	0.9944	0.8853	0.9826	0.9142

Tversky and Kahneman (1974) define representative heuristic as a behavioral tendency to wrongly overstate the importance of an observation. In the present context, the bias amounts to thinking that the best (worst) styles will keep outperforming (underperforming).

We use the bootstrap method of[START_REF] Politis | The stationary bootstrap[END_REF] to test the statistical significance of the difference in CER. The p-values are obtained by resampling blocks of random length from the actual time-series { using B=10,000 bootstrapped excess returns of length T=213. The block-length is a geometrically distributed variable with expected value for p=0.2. Similar results were obtained with p=0.5.

The less refined approach that consists of solving the Equation (5), , directly for gives similar results which are unreported but available from the authors upon request.

Employing the same dataset to assess the performance of many investment strategies can trigger false discoveries; this is the data snooping issue as it is understood by practitioners.