
HAL Id: hal-03186891
https://audencia.hal.science/hal-03186891

Submitted on 6 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Econometric history of the growth–volatility relationship
in the USA: 1919–2017
Amélie Charles, Olivier Darné

To cite this version:
Amélie Charles, Olivier Darné. Econometric history of the growth–volatility relationship in the USA:
1919–2017. Cliometrica, 2021, 15, pp.419 - 442. �10.1007/s11698-020-00209-y�. �hal-03186891�

https://audencia.hal.science/hal-03186891
https://hal.archives-ouvertes.fr


Econometric history of the growth-volatility

relationship in the U.S.: 1919-2017∗

Amélie CHARLES†

Audencia Business School

Olivier DARNÉ‡

LEMNA, University of Nantes

∗We are grateful for useful comments on a previous version of this paper by anonymous referees.
†Audencia Business School, 8 route de la Joneli, 44312 Nantes Cedex 3. Email:

acharles@audencia.com.
‡Corresponding author: LEMNA, University of Nantes, Chemin de la Censive du Tertre, BP 52231,

44322 Nantes, France. Email: olivier.darne@univ-nantes.fr.

1



Abstract

In this paper, we investigate the relationship between output volatility and

growth using the standard GARCH-M framework and the U.S. monthly industrial

production index (IPI) for the period January 1919 to December 2017, by tak-

ing into account the presence of shocks and variance changes. The results show

that the IPI growth is strongly affected by large shocks which are associated with

strikes in some industries, recessions, World War II and natural disasters. We also

identify several subperiods with different level of volatility where the volatility

declines along the subperiods, with the pre-WWII period (1919-1946) the high-

est volatile period and the aftermath period of the GFC (2010-2017) the lowest

volatile period. We find no evidence of relationship between output volatility

and its growth during the full sample 1919-2017 and also for all the subperiods.

From a macroeconomic point of view, this implies that economic performances,

as measured by IPI growth, do not depend on the uncertainty as measured by IPI

volatility.

Keywords: Growth-volatility relationship; breaks; shock; GARCH-M model;

cliometrics.

JEL Classification: E32; C22; N12; O40.
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1 Introduction

The relationship between output volatility and growth is an important issue in the

economics literature. For example, Schumpeter (1939) emphasized the idea of creative

destruction predicting a positive relationship, while Arrow (1962) highlights the idea

of learning-by-doing leading to a negative relationship. More recent theoretical work

also covers the real option literature where firms view their investment choices as a

series of options. As volatility increases the option value of delay, firms postpone their

investment and so growth is negatively affected (Bernanke, 1983).

A number of studies examine the issue of how the volatility of the output growth

rate affects the growth rate of output. That is, does decreased output growth rate

volatility cause a higher or lower output growth rate? Alternative theoretical models

give mixed results: Negative (Martin and Rogers, 1997, 2000), positive (e.g., Black,

1987; Blackburn, 1999), or independent relationships (Phelps 1968; Lucas 1972) be-

tween output growth volatility and output growth.1 In the empirical literature the Gen-

eralized Autoregressive Heteroscedasticity in Mean (GARCH-M) model developed by

Engle et al. (1987) is often used to investigate the volatility-growth relationship, tak-

ing into account the time varying nature of output volatility. As shown by Fernández-

Villaverde and Rubio-Ramírez (2010), time-varying volatility, namely periods of high

volatility followed by periods of low volatility, is an important feature of macroeco-

nomic times series. Empirical evidence of the growth-volatility relationship, however,

is also mixed: negative (e.g., Henry and Olekalns, 2002), positive (e.g., Fountas and

Karanasos, 2006; Lee, 2010; Fang and Miller, 2014), or no statistically significant re-

lationship (e.g., Grier and Perry, 2000; Fang et al., 2008).

However, previous studies ignore a number of issues that could be important in

1See Fang and Miller (2008) for a discussion of the growth-volatility relationship.
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identifying the true relationship between output volatility and growth. First, existing

studies using the GARCH-M framework do not include the possibility that volatility

could be more affected by negative shocks than positive shocks. For example,

Brunner (1997), Henry and Olekalns (2002) and Ho and Tsui (2003) find evidence of

asymmetric volatility in the output growth rates in the U.S. This potential nonlinearity

in the variance of growth should also be addressed. To incorporate the asymmetric

effect of positive and negative shocks to the variance of growth, Trypsteen (2017)

suggests that the variance equation could include a nonlinear term as in the GJR-

GARCH model of Glosten, Jagannathan, and Runkle (1993).

Second, Balke and Fomby (1991), Darné and Diebolt (2004) or Darné (2009), inter

alia, show that specific events have a dramatic impact on modelling macroeconomic

time series for the U.S. This type of event includes, for example, oil shocks, wars,

financial slumps, changes of policy regimes, recessions, natural disasters, etc. Due

to their unpredictable nature and large impact on macroeconomic relationships, these

extraordinary events are referred to as (infrequent) large shocks and are often identified

as breaks, jumps or outliers, that is exogenous changes that directly affect the series.

One way to identify (infrequent) large shocks is intervention analysis, introduced by

Box and Tiao (1975) to attempt to statistically appraise these types of shocks (or

outliers or jumps). Intervention analysis is used to assess the impact of a known or

unknown event on the time series. The main focus is to estimate the effect of such

events on the series. Intervention analysis forms the basis for many outlier modelling

procedures. Moreover, it is well known that these shocks may pose difficulties for the

identification and estimation of volatility models (see, e.g., Charles, 2008; Carnero et

al., 2001, 2006; Charles and Darné; 2014).

Finally, some shocks can cause abrupt breaks in the unconditional variance and

are equivalent to structural breaks in the parameters of the GARCH process governing

the conditional volatility. Ignoring structural breaks in the time-varying variance of a
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GARCH model can bias the GARCH parameters towards one (see, e.g., Lamoureux

and Lastrapes, 1990; Hillebrand, 2005). For example, McConnell and Perez-Quiros

(2000), Blanchard and Simon (2001), Stock and Watson (2003) and Cecchetti et al.

(2006), among others, document a structural change in the volatility of U.S. output

growth, finding a rather dramatic reduction in output volatility, known as the Great

Moderation. Using GARCH specifications with breaks in volatility, Fang et al. (2008)

and Fang and Miller (2008) show that the time-varying variance falls sharply or

disappears, once they incorporate the break in the variance equation of output.

Further, most of existing studies analyze the volatility-growth relationship dur-

ing the post-WWII period, except the studies of Fountas and Karanasos (2006) and

Fang and Miller (2014) over the periods the 1860-1999 and 1876-2012, respectively.

Moreover, when examining the relationship the output growth is often defined by the

GDP/GNP growth in most of previous studies, from ever annual data (e.g., Ramey

and Ramey, 1995; Caporale and McKierman, 1998; Fountas and Karanasos, 2006) or

quarterly data (e.g., Fang et al., 2008; Fang and Miller, 2014; Charles et al., 2018),

namely low frequency data. To the best of our knowledge, only Grier and Perry (2000)

and Trypsteen (2017) examine the volatility-growth relationship using industrial pro-

duction index as output at a monthly frequency, namely high frequency (in macroe-

conomics), which seems better to fit GARCH models, but only on the post-WWII

period. Further, these both studies do not take into account the presence of outliers in

the volatility.

This paper investigates the relationship between output volatility and growth using

the standard GARCH-M framework and a long series of the U.S. monthly industrial

production index for the period January 1919 to December 2017. This historical period

allows to compare the pre- and post-World War II. This study analyzes the growth-

volatility relationship accordingly to account for the issues discussed above. Firstly, we
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employ the semi-parametric procedure to detect jumps proposed by Laurent, Lecourt

and Palm (LLP) (2016) based on the GARCH and GJR-GARCH models, and try to

associate these shocks to political, financial or economic events. Secondly, we use

an appropriate methodology to identify breakpoints and sudden shifts in volatility to

define low volatility periods and high volatility periods. A relatively recent approach

to test for volatility shifts is the iterative cumulative sums of squares (ICSS) algorithm

(Inclán and Tiao, 1994; Sansó et al., 2004). The variance changes detected allow

to define sub-periods for which we examine the evolution of the growth-volatility

relationship using both GARCH-in-Mean and GJR-GARCH-in-Mean models.

The remainder of this paper is organized as follows: Section 2 describes the

methodology of jump and variance-change detection, and presents the results. The

GARCH and GJR-GARCH models as well as the effects of jumps and variance

changes on output volatility modeling are presented in Section 3. Section 4 discussed

the growth-volatility relationship for the full period and the subperiods. Finally,

Section 5 concludes.

2 Detection of outliers and variance changes

2.1 Jump detection in GARCH models

We apply the semi-parametric procedure to detect jumps proposed by Laurent et al.

(LLP) (2016). Their test is similar to the non-parametric tests for jumps in Lee and

Mykland (2008) and Andersen, Bollerslev, and Dobrev (2007) for monthly data.

LLP assume that the growth rate series yt is described by a Normal AR(p)-
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GARCH(1,1) model

rt = µt + εt (1)

φ(L)µt = c+ εt ⇔ µt = c+
∞

∑
i=1

ξiεt−i (2)

εt = σtzt , zt ∼ i.i.d.N(0,1), (3)

σ
2
t = ω+αε

2
t−1 +βσ

2
t−1 (4)

where ξi are the coefficients of ξ(L) = φ−1(L) = 1+∑
∞
i=1 ξiLi, L is the lag operator,

and φ(L) is the AR polynomial of order p . The parameters should satisfy ω > 0, α≥ 0

and β≥ 0 to guarantee the positivity of the conditional variance.

Consider the growth rate series yt with an independent jump component atIt ,

defined as

y∗t = yt +atIt (5)

where y∗t denotes the observed series, It is a dummy variable for a jump on month t,

and at is the jump size. In equation (5) a jump atIt will not affect σ2
t+1 (the conditional

variance of rt+1), so that we can have non-Gaussian fat-tailed conditional distributions

of y∗t .

LLP then use the bounded innovation propagation (BIP)-AR proposed by Muler, Peña

and Yohai (2009) and the BIP-GARCH(1,1) of Muler and Yohai (2008) to obtain

robust estimates of µt and σ2
t respectively in equations (1) and (4). These are denoted

by µ̃t and σ̃t and are robust to potential jumps atIt (i.e. they are estimated on y∗t and

not on yt). The BIP-AR and BIP-GARCH(1,1) are defined as

µ̃t = µ+
∞

∑
i=1

ξiσ̃t−iω
MPY
kδ

(J̃t−i) (6)

σ̃
2
t = ω+α1σ̃

2
t−1cδω

MPY
kδ

(
J̃t−1

)2
+β1σ̃

2
t−1 (7)

where ξi are the coefficients from the AR(p) polynomial defined in equation (2),

ωMPY
kδ

(.) is the weight function, and cδ a factor ensuring that the conditional
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expectation of the weighted square of unexpected shocks equals the conditional

variance of rt in the absence of jumps (Boudt et al., 2013).

Consider the standardized growth-rate series on month t given by

J̃t =
y∗t − µ̃t

σ̃t
(8)

LLP detect the presence of jumps by testing the null hypothesis H0 : atIt = 0 against

the alternative H1 : atIt 6= 0. The null is rejected if

max
T
|J̃t |> gT,λ, t = 1, . . . ,T (9)

where gT,λ is the suitable critical value.2 If H0 is rejected a dummy variable is defined

as follows

Ĩt = I
(
|J̃t |> k

)
(10)

where I(.) is the indicator function, with Ĩt = 1 when a jump is detected at time t. LLP

show that their test does not suffer from size distortions irrespective of the parameter

values of the GARCH model in Monte Carlo simulations. The adjusted returns ỹt are

obtained as follows

ỹt = y∗t − (y∗t − µ̃t)Ĩt (11)

Laurent et al. (2016) extend this test for additive jumps in AR-GARCH models,

called BIP-AR-BIP-GARCH models, to AR-GJR-GARCH models, called BIP-AR-

BIP-GJR models, to account for asymmetric effects.3

2The critical values are defined by gT,λ = − log(− log(1−λ))bT + cT , with bT = 1/
√

2logT , and

cT = (2logT )1/2− [logπ+ log(logT )]/[2(2logT )1/2]. Laurent et al. (2016) suggest setting λ = 0.5.
3Fang et al. (2014) also detect and correct the outliers in the growth rate of real GNP using another

approach. They first detect the outliers if |yt − y| > k×σy, where k measures the stringency imposed

on outlier detection, and then apply the method of Ané et al. (2008) to correct the outliers identified.

However, this approach is very sensitive to the value of k since when k = 2, 3 and 4 it identifies 36, 7

and 1 outliers, respectively. The choice of k = 3 by Fang et al. (2014) is only based on the number of

outliers found in previous studies.
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2.2 Variance change detection

The most popular statistical methods specifically designed to detect breaks in volatility

are CUSUM-type tests. Here, we use the modified iterative cumulative sum of squares

(ICSS) algorithm proposed by Sansó et al. (2004) which is based on the ICSS algo-

rithm developed by Inclán and Tiao (1994).

Let it the IPI growth rate. {yt} is then assumed to be a series of independent

observations from a Normal distribution with zero mean and unconditional variance

σ2
t for t = 1, . . . ,T . Assume that the variance within each interval is denoted by σ2

j ,

j = 0,1, . . . ,NT , where NT is the total number of variance changes and 1 < κ1 < κ2 <

· · ·< κNT < T are the set of breakpoints. Then the variances over the NT intervals are

defined as

σ
2
t =



σ2
0, 1 < t < κ1

σ2
1, κ1 < t < κ2

. . .

σ2
NT
, κNT < t < T

The cumulative sum of squares is used to estimate the number of variance changes and

to detect the point in time of each variance shift. The cumulative sum of the squared

observations from the beginning of the series to the kth point in time is expressed

as Ck = ∑
k
t=1 y2

t for k = 1, . . . ,T . In order to test the null hypothesis of constant

unconditional variance, the Inclán-Tiao statistic is given by:

IT = supk|(T/2)0.5Dk| (12)

where Dk =
(Ck

CT

)
−
( k

T

)
, with CT is the sum of the squared residuals from the whole

sample period. The value of k that maximizes |(T/2)0.5Dk| is the estimate of the break

9



date. The ICSS algorithm systematically looks for breakpoints along the sample. If

there are no variance shifts over the whole sample period, Dk will oscillate around zero.

Otherwise, if there are one or more variance shifts, Dk will departure from zero. The

asymptotic distribution of IT is given by supr|W ∗(r)|, where W ∗(r) = W (r)− rW (1)

is a Brownian bridge and W (r) is standard Brownian motion. Finite-sample critical

values can be generated by simulation.

The IT statistic is designed for i.i.d. processes, which can be a strong assumption

for macroeconomic data, especially for high frequency data, in which there is evidence

of conditional heteroskedasticity. Sansó et al. (2004) show that the size distortions

are important for heteroskedastic conditional variance processes from Monte carlo

simulations. To overcome this problem, Sansó et al. (2004) propose a new test

that explicitly consider the fourth moment properties of the disturbances and the

conditional heteroskedasticity. They suggest a non-parametric adjustment to the IT

statistic that allows yt to obey a wide class of dependent processes under the null

hypothesis. As suggested by Sansó et al. (2004), we use a non-parametric adjustment

based on the Bartlett kernel, and the adjusted statistic is given by:

AIT = supk|T−0.5Gk| (13)

where Gk = λ̂−0.5
[
Ck−

( k
T

)
CT

]
, λ̂= γ̂0+2∑

m
l=1
[
1−l(m+1)−1]γ̂l , γ̂l =T−1

∑
T
t=l+1(e

2
t −

σ̂2)(e2
t−l− σ̂2), σ̂2 = T−1CT , and the lag truncation parameter m is selected using the

procedure in Newey and West (1994). Under general conditions, the asymptotic dis-

tribution of AIT is also given by supr|W ∗(r)|, and finite-sample critical values can be

generated by simulation.

Rodrigues and Rubia (2011) discuss the effects that sample contamination has on

the asymptotic properties of CUSUM-type tests for detecting change points in variance

and characterize the finite sample behavior by means of Monte Carlo simulations.
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They focus on additive outliers which prove able to generate large size distortions in

these tests. The authors show that the Sansó et al. (2004) test exhibits low power and

tends to find few or no breaks at all. Therefore, as suggested by Rodrigues and Rubia

(2011), we attempt to identify the variance changes not from the original data but from

the outlier-adjusted data.4

2.3 Results

We study the U.S. monthly industrial production index (IPI) for the period January

1919 to December 2017, namely 1,188 observations. The data are downloaded on the

Federal Reserve Economic Data (FRED) website of the Federal Reserve Bank of St.

Louis.5 We compute the growth rate series as yt = (ipit − ipit−1)/ipit−1, where ipit

is the IPI index at time t. The graphical representation of IPI growth rate appears in

Figure 1, and reveals the presence of outliers.

In Panel A of Table 1, all detected jumps are given with their timing and t-statistics

for both the GARCH and GJR-GARCH models. In addition, we also associate the date

of each shocks to a specific event that occurred near that date.6 Note that we find the

same number and timing of shocks for the GARCH and GJR-GARCH models, except

for three observations. Figure 2 displays the original and adjusted growth rates.

4Note that Inclán and Tiao (1994) advised that “it is advisable to complement the search for variance

changes with a procedure for outlier detection”.
5The IPI data had been seasonally adjusted by FRED prior to the analysis and are available at:

https://fred.stlouisfed.org/series/INDPRO.
6Most of explanations associated to the detected shocks are found in the Federal Reserve

Bulletin of the Board of Governors of the Federal Reserve System for the 1920-1997 pe-

riod (https://fraser.stlouisfed.org) and in the Industrial Production and Capacity Utilization -

G.17 of the Board of Governors of the Federal Reserve System for the 1997-2017 period

(https://www.federalreserve.gov/releases/g17/).
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Overall, most of (positive and negative) shocks can be associated with strikes in

some industries, recessions, World War II and natural disasters, giving strong proof of

infrequent large shocks.

Strikes. Industrial production declines in April 1927 (-2.4%) reflecting reduced

activity both in mines and in factories due to the coal miners’ strike. The large increase

in March 1946 (+10.5%) is due to a sharp recovery in steel ingot production following

settlement of the labor dispute. The decline in industrial production in October 1949

(-3.7%) is due to the steel strike. The increase in industrial production in August 1952

(+6.4%) can be explained by the increase in steel and iron ore production following

settlement of the dispute (work stoppages) at steel works and iron ore mines in July.

Further, the industrial production recovers after strikes in steel industry in August 1956

(+4.1%) and in December 1959 (+6.2%), and auto industry November 1964 (+3.1%).

Recessions. The fall in industrial production in April 1932 (-6.8%) can be explained

by the Great Depression. Industrial production sharply declines in November and

December 1937 (-9.8% and -8.9%, respectively) with a sharp reduction in the durable

good industries, associated with the 1937-1938 recession. The decline in April 1980

(-2%) can be explained by the 1980 recession, implying reductions in the industrial

production. The post WWI expansion (1919-1920) can explain the increase in

industrial production in January 1920 (+9.4%) due to the strong rise in agricultural

exports following the Victory loan boom.

World War II. Industrial activity increases in September 1939 (+6.1%) after the

outbreak of war in Europe. The rise of industrial production in April 1942 (+2.8%)

reflects continued advances in armament production, especially activity in the iron

and steel, machinery, aviation, and shipbuilding industries, after the entering in war

of the U.S. in December 1941. The strong decline in industrial activity in August and

September 1945 (-10.4% and -8.9%, respectively) can be explained by the surrender

of Japan, implying cancelation of military contracts, and thus decline in production in
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aircrafts, shipbuilding and ordnance plants. Industrial activity considerably increases

in May and June 1933 (+16.6% and +15.3%, respectively) with the increased activity

in the steel industry, reflecting the increased demand from automobile producers,

associated with an advance in the general level of commodity prices.

Natural disasters. Industrial production falls after hurricanes Katrina and Rita in

September 2005 (-1.8%) and hurricanes Gustav and Ike in September 2008 (-4.3%).

These drops are also associated with strikes at a major aircraft producer. The reduction

in motor vehicle output was responsible for a great part of the decline in industrial

production (-1.4%) in January 1978 as well as severe storm activity over much of

the US which caused widespread absenteeism, shorter workweeks, and some supply

disruption.

Finally, the decline in industrial production in November 1974 (-3.3%) reflects a

widening of cutbacks in production of consumer goods and materials, following the

oil shock, and the effects of coal strike.

Table 2 presents summary statistics for the output growth variables, for both

original and adjusted series (Panel A). As regards the original variables, empirical

statistics indicate that the output growth rate is not Normally distributed (Jarque-

Bera test). As regards higher moments of the distribution, output growth rate

exhibits evidence of significant positive skewness and excess kurtosis. Blanchard and

Simon (2001) note that the distribution of output growth exhibits excess kurtosis, if

large and infrequent shocks occur. This suggests that the evidence of kurtosis may

reflect extreme changes in growth rate. The Ljung-Box test leads to the presence

of serial correlation in the series. The Lagrange Multiplier test for the presence of

ARCH effects clearly indicates that output growth variable shows strong conditional

heteroscedasticity.

Once outliers are accounted for, measures of non-Normality in adjusted series improve,
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sometimes quite dramatically, reducing excess skewness and excess kurtosis, but still

without a Normal error structure because of excess kurtosis. This result confirms that

of Fagiolo et al. (2008) who demonstrate that fat tails emerge in output growth rates

independently of the length of time lags used to compute the growth rates and outliers.

Finally, evidence of conditional heteroscedasticity is still found. From the comparison

of basic statistics, it turns out that accounting for outliers diminishes deviation to Nor-

mality, which is an expected result. However, this does not prevent from evidence of

ARCH effects at this stage.

The time periods of a shift in volatility as detected by the modified ICSS algorithm

from the adjusted data are given in Panel B of Table 1. The results show the presence

of three variance changes, with a first shift in October 1946 associated with the end

of the WWII, a second in February 1962, and finally a variance change in January

1984.7 This last break in volatility is associated with the well documented decline

in output growth volatility in the eighties, characterized in the literature as the “Great

Moderation” period. This break date estimated is in line with that found by McConnell

and Perez-Quiros (2000), Blanchard and Simon (2001), Stock and Watson (2003),

Cecchetti et al. (2006), and Charles et al. (2018), among others.8 Figure 3 displays

the variance changes.

We also display summary statistics for the (outlier-adjusted) output growth rate in

7Note that the studies on the U.S. quarterly GNP/GNP growth exhibit only one structural break

during the post-WWII period, around 1984Q2 (see, e.g., Stock and Watson, 2005; Summers, 2005;

Cecchetti et al., 2006; Fang et al., 2014; Charles et al., 2018).
8Among the potential factors of this Great Moderation period, the literature put forward (i) ‘good

practices’, i.e.: improved inventory management (e.g., McConnell and Perez-Quiros, 2000); (ii) ‘good

policies’, i.e.: good monetary policy (e.g., Clarida et al., 2000; Bernanke, 2004; Boivin and Giannoni,

2006; Gali and Gambetti, 2009); and (iii) ‘good luck’, i.e.: a decline in the volatility of exogenous

shocks (e.g., Stock and Watson, 2003, 2005; Ahmed et al., 2004).
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four subperiods following the detected variance changes (Panel B of Table 2). The

results show that the volatility of industrial production declines along the subperiods,

where the pre-WWII period (1919-1946) is the highest volatile period, with a standard

deviation five times that of the Great Moderation period (1984-2017), defined as the

lowest volatile period, with 3.30 and 0.61, respectively. Due to the fact that the

subperiod 1984-2017 includes the global financial crisis (GFC) we exclude this period

by decomposing the subperiod 1984-2017 into two subperiods: 1984-2007 and 2010-

2017. We find that the Great Moderation period (1984-2007) and the aftermath period

of the GFC (2010-2017) are well the lowest volatile periods, with the latter displaying

the smallest standard deviation (0.47%). All the sub-samples are characterized by non-

Normality, especially the 1984-2017 subperiod. However, when excluding the GFC

the non-Normality measures dramatically decrease, especially the skewness (1984-

2007) or the kurtosis (2010-2017) which become significant. An interesting result is

that the 1946-1962, 1962-1983, 1984-2007 and 2010-2017 subperiods do not exhibit

evidence of ARCH effect, suggesting that the GARCH and GARCH-M modelling

could not be appropriate for these subperiods.9

3 Output volatility modelling

In this section, we assess the impact on modeling of not taking outliers and variance

changes into account. As argued by Fernández-Villaverde and Rubio-Ramírez (2010),

modelling volatility is important to understand the source of aggregate fluctuations,

the evolution of the economy, and for policy analysis. Further, it is necessary to

have an accurate modeling of volatility to propose structural models with mechanisms

9We wish to thank the referee for pointing out that the GFC should not be considered as a part of the

Great Moderation, and thus should be excluded from the last subperiod. The results show the impact of

the GFC on the summary statistics.
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that generate it (Fernández-Villaverde and Rubio-Ramírez, 2007, 2010; Justiniano

and Primiceri, 2008). In this respect, we estimate AR(p)-GARCH(1,1) and AR(p)-

GJR-GARCH(1,1) models for the growth rate series on two datasets: (1) raw data

and (2) outlier-adjusted data. Indeed, GARCH-type models have proved useful in the

measurement of output volatility in the empirical literature.

The conditional mean growth rate is supposed to follow an AR(p) process of the

form:

xt = φ0 +
p

∑
i=1

φixt−i + εt , (14)

where the lag order p is selected from the Schwarz Bayesian criterion (SBC) in order

to capture growth dynamics and to produce uncorrelated residuals. For all t, xt = yt for

the original series or xt = ỹt for the adjusted series, with

εt = vt

√
σ2

t ,

εt ∼ N(0,
√

σ2
t ), vt ∼ i.i.d.N(0,1),

σ
2
t = ω+αε

2
t +βσ

2
t−1 (15)

The parameters should satisfy ω > 0, α ≥ 0 and β ≥ 0 to guarantee the positivity of

the conditional variance. The stationarity of the process (the second-order moment

condition) is guaranteed by the restriction α + β < 1. Ling and McAleer (2002a,

2002b) derived the regularity conditions of a GARCH(1,1) model as follows: E[ε2
t ] =

ω

1−α−β
<∞ if α+β< 1, and E[ε4

t ]<∞ if kα2+2αβ+β2 < 1, where k is the conditional

fourth moment of zt .10 Ng and McAleer (2004) underline the importance of checking

these conditions.

The sum of α and β quantifies the persistence of shocks to conditional variance,

meaning that the effect of a volatility shock vanishes over time at an exponential rate.

The GARCH models are short-term memory which define explicitly an intertemporal
10Under the assumption of a Normal distribution k = 3, so the condition becomes 3α2+2αβ+β2 < 1.
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causal dependence based on a past time path. It is possible to shed light on the speed of

the mean reversion process from GARCH parameters, based on the half-life concept.

Half-life gives the point estimate of half-life ( j) in quarters given as (α+β) j = 1
2 , so

the half-life is given by j = ln(0.5)/ln(α+β), i.e. it takes for half of the expected re-

version back towards E(σ2) to occur (Andersen and Bollerslev, 1997). When α+β= 1

an Integrated GARCH (IGARCH) model is defined (Engle and Bollerslev, 1986), for

which the unconditional variance is not finite, implying that the shocks to the condi-

tional variance indefinitely persist.

In order to take into account the possible presence of asymmetry effect we also

consider the GJR-GARCH model developed by Glosten, Jagannnathan et Runkle

(1993). Specification for the conditional variance of GJR-GARCH(1,1) model is

σ
2
t = ω+α ε

2
t−1 + γ I(εt−1) ε

2
t−1 +β σ

2
t−1

= ω+(α+ γ I(εt−1)) ε
2
t−1 +β σ

2
t−1 (16)

where I(εt−1) = 1 if εt−1 < 0, and 0 otherwise. The volatility is positive if ω > 0,

α > 0, γ≥ 0, α+γ≥ 0 and β≥ 0. The process is defined as stationary if the constraint

α+β+(γ/2) < 1 is satisfied. Ling and McAleer (2002b) have derived the regularity

conditions for a GJR-GARCH(1,1), defined as follows: E[ε2
t ] < ∞ if α+β+ δγ < 1,

and E[ε4
t ]< ∞ if kα2 +2αβ+β2 +βγ+ kαγ+ kδγ2 < 1.11

Asymmetry exists if γ > 0, i.e. positive and negative shocks of equal magnitude

have different effects on conditional volatility. The asymmetry is observed as the im-

pulse (α + γ) of negative shocks, which is larger than the impulse (α) of positive

shocks. In this model, good news and bad news have different effects on the condi-

tional variance: good news has an impact of α while bad news has an impact of (α+γ).

The GJR-GARCH model nets the GARCH model when γ = 0.12

11Under a Normal distribution δ = 1
2 .

12Trypsteen (2017) also use a GJR-GARCH model to capture the asymmetric effect whereas Fang et
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Tables 3 and 4 provide the estimation results for the AR(p)-GARCH(1,1) and

AR(p)-GJR-GARCH(1,1) models on the full sample and the sub-samples, respec-

tively. The parameters of the volatility models are estimated by maximizing the (quasi)

log-likelihood function from the quasi-Newton method of Broyden, Fletcher, Gold-

farb and Shanno (BFGS) and the standard-errors estimates are obtained from the outer

product of the gradients estimator. To estimate the GARCH models, we use the pack-

age G@RCH 8.0 for Ox. We comment below the results for the full sample and the

sub-samples.

Full sample. For the original data (yt) the conditions of stationarity (E[ε2
t ] < ∞) and

existence of the fourth moment (E[ε4
t ]< ∞) are not satisfied for the GARCH and GJR-

GARCH models (Table 3). When shocks are taken into account (ỹt) the condition

of stationarity is satisfied for the GARCH model, implying that this condition can be

biased by the presence of jumps, but the existence of the fourth moment is still not

satisfied. This finding confirms that of Ng and McAleer (2004), showing that outliers

can affect the moment conditions of GARCH models. The GJR-GARCH model does

not satisfy the regulatory conditions. These results suggest that estimating the volatil-

ity models on a long period are not appropriate to capture the time-varying volatility

of the output growth rate, even if the outliers are taken into account. Note that the

residual tests show the presence of non-normality and autocorrelation but the ARCH

effect is well taken into account.

Sub-samples ((outlier-adjusted data). For the pre-WWII period (1919-1946) the both

volatility models do not satisfy the regularity condition, suggesting that the GARCH

al. (2014) apply an EGARCH model.
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and GJR-GARCH models are not appropriate to model this high volatile period.

The estimates of GARCH and GJR-GARCH parameters are non-significant for the

subperiods 1946-1962 and 1962-1983, implying no (G)ARCH effect during these

periods. This finding was expected for the subperiod 1946-1962 as the LM-ARCH test

has rejected the presence of ARCH effects. Therefore, we cannot estimate GARCH-

M models for both subperiods, suggesting there is no relationship between output

volatility and its growth. Finally, the volatility of output growth for the subperiod

1984-2017 is appropriately modeled by an ARCH(1) model and exhibits a very low

volatility persistence, with a persistence estimate of 0.256 and a half-life of shocks

to volatility almost half a month. When excluding the GFC the ARCH(1) parameter

stays significant for the two subperiods 1984-2007 and 2010-2017. Note that there

is no asymmetric effect, whatever the subperiods, suggesting that negative shocks

have not different effect on the variance than positive shocks in the IPI growth rate.

The residual tests show that there is no ARCH effect for all the subperiods as well

as no autocorrelation, except for the subperiods 1984-2017 and 2010-2017. These

results suggest the importance of the ARCH modelling for the industrial production.

However, the residual tests for the subperiods 1984-2017 and 2010-2017 display the

presence of non-normality and autocorrelation, implying that the estimation of the

ARCH(1) model should be taken with caution for these both subperiods.

4 The growth-volatility relationship

In this section, we analyze the growth-volatility relationship by applying a GARCH-

in-Mean model (Engle et al., 1987). The mean growth rate is defined as:

xt = φ0 +
p

∑
i=1

φixt−i +λσt + εt (17)

where for all t, xt = yt for the original series or xt = ỹt for the adjusted series, where
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σt equals the standard deviation of the conditional variance (σ2
t ) defined in equations

(15) or (16) for the GARCH and GJR-GARCH models, respectively, and λ measures

the amplitude of the volatility effect.13

Full sample. Table 3 displays the GARCH-in-Mean estimation results for the original

and adjusted data. For the original data, we find a significant relationship between

output volatility and its growth from only the GARCH(1,1)-in-Mean model, with a

positive relationship (λ > 0). However, the stationary condition is not satisfied for the

GARCH-in-Mean and GJR-GARCH-in-Mean models. When outliers are taken into

account, the growth-volatility relationship is again significant from the GARCH(1,1)-

in-Mean model but the existence of the fourth moment is not satisfied, as for the GJR-

GARCH-in-Mean model.

Sub-samples ((outlier-adjusted data). The GARCH-in-Mean estimations for the sub-

periods 1919-1946, 1984-2017 and 1984-2007 are given in Table 5. The GARCH-in-

Mean models are not estimated for the subperiods 1946-1962 and 1962-1983 since no

ARCH effect has been detected, and for the subperiod 2010-2017 because the ARCH-

M estimation fails to converge.14 For the pre-WWII subperiod we find no relationship

between output volatility and its growth, whatever the GARCH-in-Mean model. For

the 1984-2017 subperiod we have evidence of a significant and positive relationship

between output volatility and its growth from the ARCH(1)-in-Mean model (λ> 0) but

exhibiting non-normality and autocorrelation in the residuals. However, when exclud-

ing the GFC the ARCH-M parameter becomes not significant, suggesting the effect

13As in Fang and Miller (2008) and Fang et al. (2008), we have also introduced lagged output growth

into the conditional variance equation in the GARCH-in-Mean model to avoid potential endogeneity

bias but the results are not significant.
14This problem can be explained by the very low number of observations to estimate an ARCH-M

model (less than 100 observations).
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of the crisis period on the ARCH-M modelling and that there is no growth-volatility

relationship during the Great Moderation.

Overall, empirical results presented in this section underline that we find no

relationship between output volatility and its growth during the full sample 1919-2017

and also for all the subperiods. From a macroeconomic point of view, this implies that

economic performances, as measured by IPI growth, do not depend on the uncertainty

as measured by IPI volatility.15

5 Robustness check

As a robustness check we repeat the estimations on one other proxy for output, by

keeping a monthly frequency. For that we take the Chicago Fed National Activity

Index (CFNAI) which is a monthly index designed to describe the economic activity.16

The CFNAI is a weighted average of 85 monthly indicators of the U.S. economic

activity, based on the work of Stock and Watson (1999).17

First, we also find the same outliers than those detected for industrial production

in the pre-1967 period, namely in November 1974, January 1978 and April 1980

15Empirical evidence of the growth-volatility relationship is mixed: negative (Henry and Olekalns,

2002), positive (Fountas and Karanasos, 2006; Fang and Miller, 2014), or no statistically significant

relationship (Grier and Perry, 2000; Fang et al., 2008). The disagreements can be explained by the

differences in terms of the time period examined, the frequency of the data, and the methodology

employed.
16To have a better fit for the GARCH models we focus on macroeconomic data with a high frequency.

The correlation between industrial production and CFNAI is of 0.86 on the period 1967-2017.
17The economic indicators are drawn from four broad categories of data: (1) production and income;

(2) employment, unemployment, and hours; (3) personal consumption and housing; and (4) sales,

orders, and inventories. The derived index provides a single, summary measure of a factor common

to these economic data.
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(Figure 4), except the two outliers associated with hurricanes (September 2005 and

2008). This result suggests that the industrial production has been more affected by

these natural disasters than the whole of the economic activity. The modified ICSS

algorithm identifies only one shift in volatility in June 1984, associated with the Great

Moderation. This break in CFNAI volatility is detected five months after the break

found in industrial production.

From this result we define subperiods following the detected variance change, namely

1967-1984 and 1984-2017. For the last subperiod, we also split it into two subperiods

by excluding the GFC, as for the industrial production: 1984-2007 and 2010-2017.

Table 6) displays the summary statistics for the full sample (raw and adjusted data,

Panel A) and the subperiods (Panel B). The results show that the full period as well as

all the subperiods exhibit non-Normality, autocorrelation and ARCH effect, except the

2010-2017 subperiod.

Table 7 provides the estimation results for the GARCH and GARCH-M models on

the full sample for the raw and adjusted data. For the both data the volatility of CFNAI

is better modelled by a symmetric GARCH model because either the condition of

the fourth moment is not satisfied for the GJR model (raw data) or the asymmetric

parameter is not significant (adjusted data). Further, when outliers are taken into

account, the GARCH parameter on the lagged conditional variance (β) becomes

not significant, showing again the effect of the outliers on the GARCH modelling.

Finally, we find no evidence of a growth-volatility relationship in the full sample as for

industrial production.

The results for GARCH models in the subperiods are given in Table 8 and

are similar to those found for industrial production. The (G)ARCH model is not

appropriate during the pre-1984 subperiod for CFNAI since all the parameters in the

variance equation are not significant. Only the subperiod before the GFC (1984-2007)

appears to be well modelled by an ARCH(1) model. Therefore, we cannot estimate
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GARCH-M models for the subperiods 1967-1984 and 2010-2017.

The subperiod 1984-2017 seems to exhibit a significant and positive relationship

between output volatility and its growth, as found for industrial production. However,

when excluding the GFC we find again no evidence of output-growth relationship

for CFNAI. This result confirms those found for industrial production and show the

spurious effect of the GFC on the estimation of the ARCH-M models.

6 Conclusion

In this paper, we investigated the relationship between output volatility and growth

using the standard GARCH-in-Mean framework and the U.S. monthly industrial

production index (IPI) for the period January 1919 to December 2017. We analyzed the

growth-volatility relationship in three ways. First, in addition to the GARCH-in-Mean

model we also estimated a GJR-GARCH-in-Mean model where the variance equation

includes a nonlinear term that allows negative shocks to have a different effect on the

variance than positive shocks. Second, we employed the semi-parametric procedure

proposed by Laurent, Lecourt and Palm (2016) to detect large shocks that affect

the IPI growth, and try to associate these shocks to political, financial or economic

events. Third, we identified shifts in volatility to define low volatility periods and

high volatility periods. The detected shocks and variance changes are then taken into

account for examining both volatility modelling and growth-volatility relationship.

There are three main conclusions that can be drawn from the analysis. First,

IPI growth is strongly affected by (positive and negative) large shocks which are

associated with strikes in some industries, recessions, World War II and natural

disasters. We also identify several subperiods with different level of volatility where

the volatility declines along the subperiods, with the pre-WWII period (1919-1946)

the highest volatile period and the aftermath period of the GFC (2010-2017) the lowest
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volatile period. Second, accounting for jumps and variance changes are important to

uncover the relationship between output volatility and growth, whereas the asymmetric

GARCH effects is not significant. Third, the results show no evidence of relationship

between output volatility and its growth during the full sample 1919-2017 and also

for all the subperiods. From a macroeconomic point of view, this implies that

economic performances, as measured by IPI growth, do not depend on the uncertainty

as measured by IPI volatility.
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Figure 1: Growth rate of industrial production (1919-2017)
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Figure 2: Raw and adjusted series of industrial production (1919-2017)
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Figure 3: Variance changes of industrial production (1919-2017)
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Figure 4: Raw and adjusted series of CFNAI (1919-2017)
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Table 1: Jumps and variance changes detected in the IPI growth.

Date GARCH t-stat GJR t-stat Percent change Events

Panel A: Jumps

1920M1 4.098 4.440 9.42 Victory loan boom

1920M11 -4.442 -4.687 -8.24

1927M4 -3.792 -4.092 -2.37 Coal miners’ strike

1932M4 -4.018 – -6.79 Great Depression

1933M5 6.214 6.521 16.56 strong steel production

1933M6 6.358 6.658 15.34 strong steel production

1937M11 -4.317 -4.571 -9.82 Reduction of durable good industries

1937M12 -4.261 -4.453 -8.87 Reduction of durable good industries

1939M9 3.778 4.712 6.05 Outbreak of war in Europe

1942M4 3.690 4.468 2.81 World War II

1945M8 -6.662 -5.355 -10.38 Surrender of Japan

1945M9 -3.445 – -8.94 Surrender of Japan

1946M3 5.683 5.650 10.45 End of strikes

1949M10 -5.332 -5.048 -3.73 Steel strike

1952M8 7.146 5.959 6.43 Increase in steel and iron ore production

1956M8 3.621 – 4.08 End of steel strike

1959M12 4.182 3.744 6.18 End of steel strike

1964M11 4.223 4.044 3.09 End of auto industry strike

1974M11 -4.629 -4.075 -3.29 Oil shock

1978M1 -3.697 -3.807 -1.38 Reduction in auto production

1980M4 -3.786 -3.478 -2.04 Recession

2005M9 -4.030 -3.750 -1.84 Hurricanes Katrina & Rita

2008M9 -4.439 -3.465 -4.31 Hurricanes Gustav & Ike

Panel B: Variance changes

1946M10 World War II

1962M2

1984M1 Great Moderation

Notes: The Gumbel critical value with T = 1187 and α = 0.5 is 3.44798.
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Table 2: Descriptive Statistics for industrial production.

Series Mean (%) St. dev. (%) Skewness Excess Kurtosis Jarque-Bera Q(12) LM(12)

Panel A: Full sample

raw data 0.276 1.922 0.672∗ 12.5∗ 7847.2∗ 469.2∗ 61.8∗

adjusted data 0.279 1.644 0.211∗ 5.21∗ 1349.4∗ 491.8∗ 63.8∗

Panel B: Sub-samples

Adjusted data

1919M2-1946M9 0.352 3.300 0.396∗ 3.22∗ 151.8∗ 149.7∗ 10.2∗

1946M10-1962M1 0.356 1.506 0.552∗ 3.93∗ 38.0∗ 131.6∗ 2.62

1962M2-1983M12 0.288 0.881 -0.741∗ 2.39∗ 86.4∗ 85.7∗ 1.42

1984M1-2017M12 0.171 0.610 -1.440∗ 8.75∗ 1441.7∗ 138.6∗ 4.37∗

1984M1-2007M12 0.235 0.517 -0.038 3.95∗ 11.3∗ 41.2∗ 10.8

2010M1-2017M12 0.178 0.466 0.546∗ 3.46 5.62 13.9 2.08

Notes: ∗ and ∗∗ mean significant at 5% and 10% level, respectively. The Jarque-Bera test for normality is distributed as a χ2(2).

Q(12) is the Ljung-Box statistic at lag 12 of the standardized residuals. It is asymptotically distributed as χ2(k), where k is the

lag length. LM(12) is the ARCH LM test at lag 12. It is distributed as χ2(q), where q is the lag length. For each test the lag k is

the total length lag.
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Table 3: Estimation results for GARCH and GARCH-M models on full sample for

industrial production (1919-2017).

Series raw data adjusted data raw data adjusted data

Models GARCHb GJRb GARCHa GJRb GARCH-Ma GJR-Ma GARCH-Ma GJR-Ma

φ0 0.003
(8.36)

0.002
(3.78)

0.003
(6.13)

0.002
(4.45)

0.001∗
(1.57)

0.001∗
(0.88)

0.001∗
(1.19)

0.001∗
(1.25)

φ1 0.171
(7.59)

0.280
(9.83)

0.304
(10.7)

0.310
(10.9)

0.174
(6.76)

0.287
(9.37)

0.300
(10.2)

0.313
(10.7)

φ2 0.142
(6.09)

0.107
(3.74)

0.119
(3.94)

0.130
(4.31)

0.150
(6.18)

0.110
(3.81)

0.120
(3.92)

0.130
(4.32)

φ3 0.156
(6.56)

0.114
(4.34)

0.103
(3.58)

0.105
(3.94)

0.154
(6.46)

0.113
(4.20)

0.103
(3.56)

0.104
(3.89)

λ 0.279
(3.37)

0.158∗
(1.54)

0.253
(1.97)

0.138∗
(1.08)

ωc 0.063
(6.51)

0.018
(4.42)

0.015
(4.20)

0.012
(3.50)

0.063
(6.80)

0.021
(4.56)

0.015
(4.25)

0.014
(3.51)

α 0.455
(11.8)

0.051
(3.70)

0.127
(8.99)

0.053
(4.10)

0.451
(12.3)

0.051
(3.61)

0.126
(9.07)

0.053
(4.05)

β 0.610
(24.2)

0.819
(75.0)

0.864
(67.9)

0.866
(72.1)

0.609
(25.8)

0.815
(75.8)

0.866
(69.3)

0.866
(70.8)

γ – 0.330
(10.9)

– 0.168
(7.11)

– 0.318
(10.2)

– 0.161
(6.92)

persist. 1.065 1.035 0.992 1.003 1.060 1.025 0.991 0.999

half-life – – 86.3 – – – 79.3 518.1

LL 3676.7 3710.6 3795.7 3816.0 3682.5 3711.8 3797.7 3816.6

Residual tests

Jarque-Bera 585.3∗ 496.8∗ 320.8∗ 201.0∗ 479.6∗ 487.0∗ 314.4∗ 204.6∗

Q(12) 31.6∗ 15.2∗ 17.7∗ 15.0∗ 31.6∗ 16.0∗ 18.3∗ 15.3∗

LM(12) 1.04 1.19 0.57 0.48 0.89 1.12 0.66 0.52

Notes: (α+ β) and (α+ β+ γ/2) measure the volatility persistence for the GARCH and GJR-GARCH models, respectively.

Half-life gives the point estimate of half-life ( j) in days given as persist. j = 1
2 . The ARCH-M models are defined as:

yt = φ0 + ∑
4
i=1 φiyt−i + λσt + εt ; and σ2

t = ω + αε2
t + βσ2

t + θyt−1. a denotes that the condition for existence of the fourth

moment of the model is not observed. b denotes that the stationarity condition of the model is not satisfied. c the constant in

variance ω is multiplied by 104. The t-statistics are given in parentheses. ∗ means significant at 5% level.
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Table 5: Estimation results for GARCH-M models in sub-samples for industrial

production (adjusted data).

Series 1919-1946 1984-2017 1984-2007

Models GARCH-Ma GJR-Ma GARCH-M GJR-M GARCH-M GJR-M

φ0 0.005
(0.98)

−0.001
(−0.14)

−0.001
(−0.45)

−0.001
(−0.67)

0.001∗
(0.17)

−0.001∗
(−0.22)

φ1 0.561
(11.8)

0.550
(17.3)

0.098
(2.12)

0.142
(2.17)

−0.025∗
(−0.40)

0.025∗
(0.31)

φ2 – – 0.208
(4.29)

0.171
(3.48)

0.261
(4.71)

0.238
(4.11)

φ3 – – 0.183
(3.65)

0.166
(3.20)

0.209
(3.86)

0.186
(3.22)

λ 0.074∗
(0.28)

0.271∗
(1.44)

0.653
(1.83)

0.621
(1.89)

0.478∗
(1.03)

0.611∗
(1.25)

ωc 0.377
(2.16)

2.747
(8.51)

0.187
(12.4)

0.188
(12.4)

16.5
(8.69)

17.1
(9.05)

α 0.322
(4.18)

0.412
(3.46)

0.286
(4.82)

0.047∗
(0.89)

0.248
(2.78)

0.069∗
(0.81)

β 0.644
(8.71)

– – – – –

γ – 0.464∗
(1.62)

– 0.458
(3.84)

– 0.288
(1.94)

persist. 0.966 0.644 0.286 – 0.248 –

half-life 19.9 1.6 0.55 – 0.50 –

LL 810.8 795.3 1588.9 1595.2 11.43.1 –

Jarque-Bera 6.00∗ 7.58∗ 25.4∗ 12.5∗ 1.03 0.76

Q(12) 9.62 10.5 24.7∗ 21.1∗ 12.5 11.7

LM(12) 0.63 0.41 1.29 1.15 0.78 0.84

Notes: The ARCH-M models are defined as: yt = φ0 +∑
4
i=1 φiyt−i +λσt + εt ; and σ2

t = ω+αε2
t +βσ2

t +θyt−1. a denotes that

the condition for existence of the fourth moment of the GARCH is not observed. b denotes that the ARCH-M estimation fails to

converge. c the constant in variance ω is multiplied by 104. The t-statistics are given in parentheses. ∗ means significant at 5%

level
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Table 6: Descriptive Statistics for CFNAI (1967-2017).

Series Mean St. dev. Skewness Excess Kurtosis Jarque-Bera Q(12) LM(12)

Panel A: Full sample

raw data 0.002 1.016 -1.140∗ 6.75∗ 488.6∗ 1096.0∗ 43.2∗

adjusted data 0.011 0.946 -1.876∗ 10.2∗ 1103.0∗ 1445.5∗ 50.3∗

Panel B: Sub-samples

Adjusted data

1967M3-1984M6 0.195 1.159 -0.349∗ -3.28 4.87 454.1∗ 3.66∗

1984M7-2017M12 0.023 0.911 -1.440∗ 8.75∗ 1441.7∗ 976.0∗ 60.1∗

1984M7-2007M12 0.052 0.649 -0.463∗ 3.23 10.7∗ 344.1∗ 6.59∗

2010M1-2017M12 -0.045 0.383 0.111 2.19 2.19 12.9 0.52

Notes: ∗ and ∗∗ mean significant at 5% and 10% level, respectively. The Jarque-Bera test for normality is distributed as a χ2(2).

Q(12) is the Ljung-Box statistic at lag 12 of the standardized residuals. It is asymptotically distributed as χ2(k), where k is the

lag length. LM(12) is the ARCH LM test at lag 12. It is distributed as χ2(q), where q is the lag length. For each test the lag k is

the total length lag.
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Table 7: Estimation results for GARCH and GARCH-M models on full sample for

FCNAI (1967-2017).

Series raw data adjusted data raw data adjusted data

Models GARCH GJRa GARCH GJR GARCH-M GJR-Ma GARCH-M GJR-M

φ0 0.131∗
(1.91)

0.019∗
(0.24)

0.001∗
(0.01)

−0.018∗
(−0.14)

0.066∗
(0.51)

0.018∗
(0.13)

−0.171∗
(−1.05)

−0.282∗
(−1.63)

φ1 0.201
(4.30)

0.226
(4.85)

0.209
(4.33)

0.212
(4.35)

0.204
(4.39)

0.226
(4.67)

0.206
(4.22)

0.240
(4.08)

φ2 0.279
(6.11)

0.269
(6.27)

0.385
(10.3)

0.380
(9.97)

0.286
(6.00)

0.269
(6.20)

0.378
(10.4)

0.350
(7.76)

φ3 0.186
(4.63)

0.188
(4.66)

0.218
(5.75)

0.214
(5.58)

0.184
(4.52)

0.188
(4.44)

0.214
(5.68)

0.187
(4.44)

λ – – – – 0.125∗
(0.61)

0.003∗
(0.012)

0.400∗
(1.66)

0.561
(2.52)

ω 0.124
(4.44)

0.112
(4.20)

0.295
(11.1)

0.297
(11.0)

0.132
(4.11)

0.113
(4.18)

0.292
(10.8)

0.296
(10.9)

α 0.414
(5.69)

0.161
(2.52)

0.329
(3.79)

0.266
(2.47)

0.428
(5.42)

0.161
(2.49)

0.340
(3.81)

0.204
(2.02)

β 0.388
(4.82)

0.452
(5.26)

– – 0.363
(3.82)

0.452
(4.97)

– –

γ – 0.409
(3.58)

– 0.112
(0.81)

– 0.112∗
(0.81)

– 0.234∗
(1.63)

persist. 0.803 0.818 0.329 0.322 0.790 0.818 0.340 0.321

half-life 3.16 3.44 0.62 0.61 2.94 3.44 0.64 0.61

LL -615.8 -607.8 -582.5 -582.2 -615.6 -607.8 -581.4 -580.1

Jarque-Bera 33.4∗ 23.8∗ 29.3∗ 31.0∗ 35.3∗ 29.3∗ 31.7∗ 32.0∗

Q(12) 24.6∗ 18.5∗ 17.2∗ 17.2∗ 23.7∗ 18.1∗ 17.1∗ 17.7∗

LM(12) 0.40 0.27 1.17 1.15 0.33 0.27 1.08 0.92

Notes: (α+ β) and (α+ β+ γ/2) measure the volatility persistence for the GARCH and GJR-GARCH models, respectively.

Half-life gives the point estimate of half-life ( j) in days given as persist. j = 1
2 . a denotes that the condition for existence of the

fourth moment of the model is not observed. The t-statistics are given in parentheses. ∗ means significant at 5% level. The best

LL in-sample criteria is given in bold.
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Table 9: Estimation results for GARCH-M models in sub-samples for CFNAI

(adjusted data).

Series 1984-2017 1984-2007

Models GARCH-M GJR-M GARCH-M GJR-M

φ0 −0.308∗
(−1.70)

−0.392
(−2.24)

−0.221∗
(−0.85)

−0.219∗
(−0.79)

φ1 0.107
(2.08)

0.169
(2.66)

0.052∗
(0.86)

0.103∗
(1.35)

φ2 0.401
(9.40)

0.359
(6.98)

0.391
(7.45)

0.346
(5.57)

φ3 0.309
(6.42)

0.288
(5.87)

0.299
(6.39)

0.246
(4.46)

λ 0.649
(2.35)

0.682
(2.38)

0.611∗
(1.30)

0.514∗
(0.99)

ω 0.209
(10.3)

0.217
(10.6)

0.218
(8.70)

0.227
(8.46)

α 0.249
(3.28)

0.051∗
(0.69)

0.200
(2.36)

0.013∗
(0.14)

β – – – –

γ – 0.321
(2.45)

– 0.294∗
(1.90)

persist. 0.249 0.212 0.200 –

half-life 0.50 0.45 0.43 –

LL -302.8 -299.9 -212.3 –

Jarque-Bera 0.45 0.17 1.51 –

Q(12) 8.18 9.01 9.24 –

LM(12) 1.91∗ 1.30 1.14 –

Notes: (α+ β) and (α+ β+ γ/2) measure the volatility persistence for the GARCH and GJR-GARCH models, respectively.

Half-life gives the point estimate of half-life ( j) in days given as persist. j = 1
2 . The ARCH-M models are defined as:

yt = φ0 + ∑
4
i=1 φiyt−i + λσt + εt ; and σ2

t = ω + αε2
t + βσ2

t + θyt−1. a denotes that the condition for existence of the fourth

moment of the GARCH is not observed. The t-statistics are given in parentheses. ∗ means significant at 5% level.
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