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Abstract
Marketing messages are most effective if they reach the right customers. Deciding which customers
to contact is thus an important task in campaign planning. The paper focuses on empirical targeting
models. We argue that common practices to develop such models do not account sufficiently for
business goals. To remedy this, we propose profit-conscious ensemble selection, a modeling framework
that integrates statistical learning principles and business objectives in the form of campaign profit
maximization. The results of a comprehensive empirical study confirm the business value of the
proposed approach in that it recommends substantially more profitable target groups than several

benchmarks.
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1 Introduction

Big data analytics revolutionizes the face of decision support (e.g., Gupta & George, 2016).
Skepticism toward formal decision aids used to be widespread among managers (Lilien, 2011). Today,
however, we witness an unprecedented interest in quantitative decision support models. Vast amounts
of data, powerful pattern extraction algorithms, and easy to use software systems fuel this development
and promise to improve management support. For example, based on a survey among firm executives,
Germann et al. (2013) estimate that increasing marketing analytics deployment is associated with an
average eight percent increase in return on assets. In a similar way, Tambe (2014) finds the use of big
data technologies to be associated with an average one to three percent increase of firm productivity.

The paper concentrates on marketing decisions in campaign planning. Campaign planners need to
answer three questions (Elsner et al., 2004): when to make an offer (timing), how often to make an offer
(frequency), and whom to contact (target group selection). We focus on the target group selection
problem, which has been studied in the direct marketing (e.g., Phan & Vogel, 2010) and churn
management (e.g., Coussement & Van den Poel, 2008) literature. To target marketing offers, companies
use response models, which estimate acceptance probabilities for individual customers. This facilitates
soliciting the most likely responders. Response models use a variety of prediction methods including,
artificial neural networks (e.g., Olson & Chae, 2012), support vector machines (e.g., Chen et al., 2015),
or tree-based approaches (e.g., Lemmens & Croux, 2006).

Prediction methods are designed for generality and solve modeling problems in various domains
(e.g., Bose & Mahapatra, 2001). We argue that using an off-the-shelf method for customer targeting
suffers a limitation in that contextual information related to the actual decision task does not enter model
development. Budget constraints, customer lifetime value, parallel campaigns — relevant information in
campaign planning — have little effect on the estimation of the targeting model. Therefore, the objective
of the paper is to develop and test a modeling framework that accounts for business objectives during
the development of a targeting model. Current trends in marketing support this objective. In particular,
marketing communication is increasingly personalized (e.g., Golrezaei et al., 2014) and distributed
through digital channels (e.g., Ding et al., 2015). Personalization amplifies the scale of targeting

decisions while digitalization often requires real-time decision making. In this regard, both trends



illustrate the need to automate customer targeting. A high recognition of business goals during model
development seems especially important when targeting models operate in a self-governed manner.

The paper contributes to the literature in three ways. First, we make a methodological contribution.
Relying on the principles of ensemble learning, we propose a paradigm to develop predictive marketing
support models, which we call profit-conscious ensemble selection (PCES). PCES differs from previous
approaches in that it integrates established principles of statistical inference with business objectives in
customer targeting. We hypothesize that the explicit consideration of marketing goals at an early stage
in the modeling process improves the quality of targeting decisions. Second, we perform a
comprehensive empirical study including twenty-five real-world marketing data sets from different
industries to test the effectiveness of PCES. In addition to comparing several targeting models, an
important feature of the experiment is that it contrasts paradigms toward model development; namely:
1) “profit-agnostic” models derived from minimizing statistical loss, ii) “profit-centered” models derived
from maximizing business performance, and iii) an integrated approach in the form of PCES that
balances statistical and economic considerations. This setup provides novel insight concerning the
relative merits of fundamentally different approaches toward predictive modeling. Third, we clarify the
degree to which introducing profit considerations into model development improves business
performance and decision quality. We achieve this through estimating the campaign profit that emerges
from model-based targeting and the marginal profit of PCES-based targeting, respectively. This
provides a clear, managerially meaningful measure of the value of PCES.

The reminder of the paper is organized as follows: Section 2 reviews related literature. The proposed
targeting methodology is developed in Section 3. Section 4 and 5 elaborate on the design and results of

the empirical evaluation of PCES, respectively. Section 6 concludes the paper.

2 Background and related work

A large body of literature examines the antecedents of (model-based) decision support system (DSS)
effectiveness (e.g., Lilien et al., 2004). Several studies highlight the importance of the DSS exhibiting
high fit for the decision task (e.g., Dennis et al., 2001). However, the effect of fit depends on the
(post)processing of DSS recommendations. More specifically, Fuller and Dennis (2009) demonstrate

how managers learn to mitigate a lack of DSS fit and achieve performance similar to managers who
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have access to better technology (i.e., higher fit). This is reasonable since managers’ decision-making is
guided by a mental model that enables them to appraise DSS outputs in awareness of a specific problem
context, connect this output to decision quality, and, in this way, correct for misleading information
from a poor decision support model (Fuller & Dennis, 2009; Lilien, 2011). This theory indicates the
value of human supervision in model-based decision support. However, disadvantages of such “model-
manager-tandem” include high labor costs, a possible lack of expertize, especially related to big data
technologies (e.g., Manyika et al., 2011), and high latency in decision-making. PCES strives to combine
the efficiency of fully automated, model-based decision-making and the ability of managers to use
contextual, task-specific information to improve decision quality in targeting applications.

Data-driven prediction models are widely used to forecast customer responses to marketing
campaigns (e.g., Bose & Mahapatra, 2001; Chen et al., 2015; Olson & Chae, 2012). Requiring little
human intervention, they also appear well prepared to automate decision-making in real-time targeting
applications such as online advertising or social media (e.g., Ballings & Van den Poel, 2015; Fan &
Yan, 2015; Perlich et al., 2014). Prior work also studies the question whether the development of
predictive decision support models should account for business objectives. In the forecasting literature,
Granger (1969) was the first to criticize the use of quadratic loss functions for model estimation. Arguing
that real-world applications rarely exhibit symmetric error costs, he proposed loss functions that penalize
positive and negative residuals differently. Subsequent studies further elaborate on Granger’s work and
contribute theoretical as well as empirical insights (e.g., Christoffersen & Diebold, 1997; Leitch &
Tanner, 1991). PCES also employs non-standard loss functions for the development of predictive
models and assesses models in terms of business performance. The main differences lie in the
methodology and application. We focus on multivariate machine learning models as opposed to
univariate time series forecasting models and examine decision problems in marketing campaign
planning. This also implies that we study a different business objective (i.e., campaign profit).

The cost-sensitive learning literature also studies asymmetric error costs. In general, cost-sensitive
learning encompasses methods that operate at the data level, for example by altering the distribution
between classes with higher/lower misclassification costs (e.g., Domingos, 1999) and algorithmic

adaptations to make standard learners cost-aware (e.g., Zliobaité et al., 2015). This paper also considers



class-dependent misclassification costs. Specifically, the different errors in campaign planning are
soliciting customers who do not respond and failing to contact customers who would respond (e.g.,
purchase an item) otherwise. However, studies in cost-sensitive learning aim at generality and strive to
develop modeling approaches that perform well across a variety of applications where misclassification
costs differ. While generality is a goal worth pursuing, a DSS approach that focuses on a concrete
application has the potential to better reflect its specific requirements. PCES is such an approach for
decisions in the scope of targeted marketing. Marketing campaigns typically target only a small fraction
of responsive customers. This implies a different notion of model performance compared to cost-
sensitive learners, the objective of which is to minimize overall error costs.

There is also a large body of literature on predictive models for customer targeting. In general,
previous work has studied all steps of the predictive modeling process (see Figure 1) from building an
analytic database through gathering data from past campaigns and test mailings (e.g., Rokach et al.,
2008) over data preparation including target variable definition (Bodapati & Gupta, 2004; Glady et al.,
2009), independent variable development, encoding, and selection (e.g., Coussement et al., 2017), model
estimation and tuning (e.g. Chen et al., 2015) to prediction post-processing (e.g., Coussement &
Buckinx, 2011), performance evaluation (e.g., Verbraken et al., 2012) and decision-making (e.g.,
Schroder & Hruschka, 2016). However, the vast majority of previous studies estimate the targeting
model using standard prediction methods (neural networks, support vector machines, random forest,
etc.). We call this approach profit-agnostic because it does not take account of the actual business
problem — campaign profit maximization — during model development.

Some studies emphasize the inability of statistical accuracy indicators (NLL, percentage correctly
classified, etc.) to reflect marketing objectives and propose alternatives for specific applications such as
the (expected) maximum profit criterion for churn modeling (Verbeke et al., 2012; Verbraken et al.,
2012). We further extend this research in two ways. First, using a more general profit function, we
consider not only churn modeling but a broad range of targeting applications. Second, focusing on profit-
oriented model development, we introduce the business goal in an earlier modeling step where
corresponding information can exert more influence on the eventual model. To confirm this, we

empirically compare PCES to the approach of Verbeke et al. (2012).
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Figure 1: Predictive modeling process’

To our knowledge, only two studies consider a profit-oriented model development. Using a genetic
algorithm (GA), Bhattacharyya (1999) estimates the parameters of a linear model so as to maximize
profit. Cui et al. (2015) select customers with heterogeneous expected returns via partial ordering. PCES
differs from these approaches in that it i) uses a more advanced ensemble learning paradigm and ii)
adopts a multi-stage approach to balance statistical loss and business goals. To verify the appropriateness

of this design, we empirically compare PCES to the approach of Bhattacharyya (1999).

3  Methodology

In the following, we elaborate on our methodology. First, we review the statistical fundamentals of
predictive models and explain how standard loss functions disregard application characteristics. Next,
we discuss business goals in campaign planning and corresponding objective functions. Last, we

elaborate on the PCES framework, which we propose to combine statistical and business objectives.

3.1 Profit-agnostic targeting models

Targeting models belong to the field of supervised learning (e.g., Hastie et al., 2009). Assume a
marketer wishes to predict the behavior of customer i, characterized by vector x; = (xy1;, X2;, ..., Xpi) €
RM, where the elements of x; capture transactional and demographic information, amongst others. Let
i denote the response of customer i to a past marketing action. The response may be continuous (e.g.,
purchase amount) or discrete (e.g., whether an offer was accepted). In the former case, the prediction
task is a regression problem; and a classification problem otherwise. In direct marketing, modeling
discrete responses decreases bias due to incorrect model specification and may thus increase prediction
accuracy (Bodapati & Gupta, 2004). Accordingly, we focus on binary classification where y; €

{0,1} with a value of yi=1 (35=0) indicating that customer i accepted (rejected) a marketing offer. A

2 Figure 1 grounds on process models for data analysis (e.g., Li et al., 2016) and magnifies the modeling step so
as to highlight tasks in predictive analytics, including the estimation of a model, the tuning of its meta-
parameters, and potentially a post-processing of predictions (e.g., Coussement & Buckinx, 2011). Although not
explicitly highlighted, we acknowledge that a modeling process may exhibit feedback loops.
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targeting model, f{x), represents a functional mapping from customer records to responses:
fa(x):RM +— {0,1}, where A denotes a vector of model parameters. Model estimation involves fitting
model parameters to data. Afterwards, the specified model facilitates predicting y given x. In other
words, the model allows the marketer to predict customer response (and more generally behavior) from
observable customer data (summarized in x).

Targeting model development follows an inductive approach: Given a data set of customer records
and corresponding responses, D = (y;, x;)™.,, a learning algorithm fits the model parameters, A, so as
to minimize the deviation between model estimates and actual  responses:

A« mAin Q(yl-, fA(xl-)) Vi=1,..,N, where A’ denotes the optimal set of parameters and the loss

function Q measures the disagreement between model outputs and data. Therefore, model estimation is
equivalent to minimizing a loss function over D. To illustrate this, consider a marker who wishes to
predict customers’ responses to a marketing message using the well-known logit model. She estimates
the model through minimizing Q, which in the case of logit is the negative log-likelihood (NLL), over
a sample of observations from previous campaigns (i.e., D).

A loss function represents a model-internal notion of fit. In the previous example, a lower NLL
indicates that a model fits the data more accurately. Common statistical loss functions (NLL, cross-
entropy, Hinge loss, etc.) implement the principles of statistical learning to ensure that a model is able
to generalize to novel data (e.g., Vapnik & Kotz, 2006). Prediction models estimated using such loss
functions are generic and can be employed in many domains. However, they disregard specific
application characteristics unless these are accurately reflected in the loss function. We argue that a close
correspondence between a model-internal internal notion of fit and business performance should not be
taken for granted. For example, maximizing fit using some statistical loss function during model
development may lead to a different model compared to maximizing campaign profit. On the other hand,
statistical loss functions others have strong theoretical underpinnings and exhibit desirable properties
related to generalization and the accuracy of model prediction in particular (e.g., Hastie et al., 2009). It
is imperative to build on this theory when developing a prediction model to prevent overfitting (e.g.,

Vapnik & Kotz, 2006). This motivates our PCES approach to integrate statistical considerations (in the



form of established loss functions and estimation principles) and business objectives in campaign

planning (in the form of campaign profit) during the development of a targeting model.

3.2 Target group selection and model assessment in marketing campaign planning

Campaign planning aims at maximizing the efficiency of resource utilization. Contacting customers
with a marketing message entails a cost so that it is typically inefficient to target the whole customer
base. Instead, marketers use targeting models to estimate response probabilities on a customer level.
This facilitates restricting solicitations to likely responders. Applications of targeting models are
manifold and include the mail-order industry, churn management, and cross-selling (e.g., Blattberg et
al., 2008). Recently, targeting models are increasingly used in real-time settings, for example to increase
purchase probabilities in e-shops through personalization (e.g., Golrezaei et al., 2014) or to guide
decisions in online marketing (e.g., Xu et al., 2014).

From a managerial point of view, the business value of a targeting model depends on the degree to
which it increases the profitability of a marketing campaign. More specifically, campaign profitability
represents a short-term business goal. A short-term perspective may be considered problematic in that
it disregards the interdependencies of different campaigns (e.g., Bleier & Eisenbeiss, 2015; Schroder &
Hruschka, 2016). However, a short term perspective that concentrates on campaign profit is suitable in
this paper, which concerns operational decision support in reoccurring, routine tasks and real-time
applications with potential/need for decision automation. Therefore, we appraise the business value of
a targeting model in terms of the overall revenue from the specific target group that the model
recommends minus the total cost of solicitation. More formally, we model campaign profit, £2, as
(Martens & Provost, 2011; Piatetsky-Shapiro & Masand, 1999):

QU(),t)=N-1-(my - U(T) -7 —0©), (1)

where N denotes the size of the customer base, 7 the fraction of targeted customers (i.e., campaign
size), and 1, the base rate of customers willing to accept the marketing offer in the customer base. The
parameters r and ¢ represent the return and cost associated with an accepted offer and making the offer,
respectively. The quantity [(7), called the lift, is a marketing specific measure of predictive accuracy,
which depends on the size of the campaign, 7. With 7, denoting the fraction of responses in the target

group the lift is given as:
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I(r) = T 2)
A campaign that targets customers at random reaches a fraction of 7, actual responders. Thus, the lift
assesses the degree to which a model-based targeting improves over a random benchmark.

Revised versions of (1) have been proposed to capture the characteristics of specific marketing
applications. For example, Neslin et al. (2006) devise a profit function for models that target retention
actions to customers with high churn probability. The expected maximum profit criterion further refines
this approach (Verbraken et al., 2012). The advantage of the campaign profit function (1) over
subsequent advancements is generality. Connecting customer revenues, direct costs, and model accuracy
through model lift, (1) can represent a variety of targeting applications including churn management,
direct mail, e-couponing, etc. Therefore, we use (1) in this paper and leave the evaluation of the proposed
PCES approach for specific targeting tasks such as churn modeling to future work.

An assumption of (1) and its extensions is that costs and returns are homogeneous across customers.
In campaign planning, assuming constant offer costs is plausible for most marketing channels. However,
disregarding variability in customer spending (r=const.) is a strong simplification. Typically, the returns
from accepted marketing offers differ across customers. Our justification for using (1) despite this
assumption is threefold. First, it is common practice to work with class as opposed to case depending
costs/returns in the marketing and cost-sensitive learning literature (e.g., Hernandez-Orallo et al., 2011;
Rokach et al., 2008; Verbeke et al., 2012). Second, calculating campaign profit using the mean revenue
per accepted offer may be more suitable for predictive modeling, for example because information to
reliably estimate revenues at the customer level is lacking. Last, some applications do not require
distinguishing revenues across customers, for example when targeting services like study programs that

entail a fixed fee or running lead generation campaigns.

3.3 Profit-conscious ensemble selection

The proposed modeling framework is based on the view that the development of predictive decision
support models should pay attention to both statistical and business considerations. Therefore, we strive
to incorporate campaign profit (1) as marketing objective into model development (see Figure 1). To

achieve this, we decompose model development into two sub-steps. The first stage leverages statistical



learning principles. In step two, model predictions are refined to maximize campaign profit. Recall that
such multi-stage approach mimics the way in which managers use decision support models: they re-
appraise and possibly correct DSS outputs in the context of their decision task (Fuller & Dennis, 2009).

The proposed framework is based on a machine learning paradigm called ensemble selection (e.g.,
Caruana et al., 2006; Partalas et al., 2010; Wozniak et al., 2014). An ensemble is a collection of (base)
models, all of which predict the same target. Combining multiple models in an ensemble is useful to
increase predictive accuracy (e.g., Malthouse & Derenthal, 2008). Ensemble selection involves three
steps: 1) constructing a library of candidate models (model library), ii) selecting an “appropriate” subset
of models for the ensemble (candidate selection), and iii) integrating the predictions of the chosen
models into a composite forecast (model aggregation). From an algorithmic point of view, PCES is
similar to Caruana’s et al. (2006) approach. Its distinctive feature is that it integrates statistical and
economic objectives. This way, PCES embodies a different paradigm toward developing predictive

decision support models. The following subsections elaborate on this design.

3.3.1 Model library

The success of an ensemble depends on the diversity of its members (e.g., Partalas et al., 2010). To
obtain a library of diverse models, we use different learning algorithms. In addition, we consider
multiple settings for the meta-parameters of individual algorithms. Meta-parameters such as the number
of hidden nodes in a neural network (e.g., Fletcher & Goss, 1993) facilitate adapting a learning algorithm
to a particular task (Hastie et al., 2009). This suggests that prediction models from the same algorithm
vary with meta-parameters and thus display diversity.

Table 1 summarizes the learning algorithms and meta-parameter settings in the model library. The
selection is based upon previous literature on customer targeting and ensemble modeling (Caruana et
al., 2006; Lessmann et al., 2015; Verbeke et al., 2012). Some methods have been chosen due to their
popularity in academia and industry (e.g., logistic regression, decision trees, discriminant analysis) and
others because of high performance in previous studies (e.g., random forest, support vector machines,
gradient boosting). Interested readers can find a comprehensive discussion of the algorithms in Hastie

et al. (2009). In total, we consider 15 learning algorithms from which we derive 877 different models.
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3.3.2 Candidate selection

Given the model library, we select candidate models using directed hill-climbing (Caruana et al.,
2006). In particular, we first select the single best candidate model from the library. To improve this
model’s performance, we next assess all pairwise combinations of the chosen model and one other base
model from the library. This way, we obtain a collection of possible two-member ensembles, out of
which we select the best performing candidate ensemble. We then continue with examining the set of
all three-member ensembles that include the models chosen in the previous iteration. Incremental
ensemble growing terminates when adding novel members stops improving performance. Interested
readers find a working example of the algorithm in the e-companion (see online Appendix I*).

It is common practice to use statistical loss functions for ensemble member selection (e.g., Caruana
et al., 2006; Partalas et al., 2010; Wozniak et al., 2014). We propose to reserve the selection step for
business objectives. Using heuristic search, it is possible to gear ensemble selection toward any objective
function that depends on the model-estimated probabilities. In particular, we propose to maximize (1)
instead of a statistical loss function during candidate selection. This way, we devise an ensemble that
incorporates business objectives during model development. Specifically, PCES refines the first-stage
predictions, which stem from well-established prediction models and embody the principles of statistical
learning, through selective combination so as to better represent the actual decision problem. This ex-
post revision of (individual model) predictions mimics the way in which managers use DSS

recommendations and possibly correct for misleading advice (Fuller & Dennis, 2009).

3.3.3  Model aggregation

Model aggregation refers to a combination of models’ predictions. This occurs during candidate
selection and when computing the final ensemble prediction. We pool models by averaging over their
predictions. Effectively, we compute a weighted average. This is because the candidate selection
procedure of Caruana et al. (2006) allows the same model to enter the ensemble multiple times. The
opportunity to weight predictions whenever the data suggest that a strong model deserves greater

influence on the ensemble prediction adds to the flexibility of ensemble selection. Note that averaging

3 Available online at https://bit.ly/pces_appendix.
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model predictions requires all models to produce forecasts of a common scale. To ensure this, we

calibrate base model predictions using a logistic link function prior to model averaging (Platt, 2000).

4  Empirical Design
We examine the effectiveness of PCES in the scope of an empirical benchmark. Such experiment
requires suitable data, which represents the characteristics of customer targeting applications, and

benchmark models to put the performance of PCES into context.

4.1 Marketing data sets

The empirical study considers 25 cross-sectional marketing data sets. The data sets stem from
different industries and represent different prediction tasks, each of which requires selecting customers
for targeted marketing actions. The main sources from which we gather the data sets are: i) data mining
competitions, ii) previous modeling studies, iii) the UCI machine learning repository (Asuncion &
Newman, 2010), and iv) projects with industry partners. Given the large number of data sets, it is
prohibitive to discuss every data set in detail. Table 2 summarizes data set characteristics and identifies
sources where more information is available.

To simulate a real-world campaign planning setting, we randomly split data sets into two samples
using a ratio of 60:40. We refer to the two samples as the training set and the test set, respectively. We
develop targeting models using the training set and assess fully specified models on the test set. Certain
modeling choices within PCES and the benchmark models (see below) require auxiliary validation data.
Examples include the identification of the best base model in the library (as benchmark to PCES) and
the heuristic search for ensemble members in the second stage of PCES. We obtain such validation data

by means of five-fold cross validation on the training set (Caruana et al., 2006).
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Table 2: Data Sets Characteristics

Data set Marketing objective  Industry Source* Observations Variables P(+1)**
Dl Churn prediction Energy DMCO02 20,000 32 0.10
D2 Churn prediction Finance CP 155,056 23 0.14
D3 Churn prediction Finance CP 30,104 47 0.04
D4 Churn prediction Telco (Verbeke et al., 2012) 40,000 70 0.50
D5 Churn prediction Telco (Verbeke et al., 2012) 93,893 196 0.50
D6 Churn prediction Telco (Verbeke et al., 2012) 12,410 18 0.39
D7 Churn prediction Telco (Verbeke et al., 2012) 69,309 67 0.29
D8 Churn prediction Telco (Verbeke et al., 2012) 21,143 384 0.12
D9 Churn prediction Telco KDD09 50,000 301 0.07

D10 Churn prediction Telco (Verbeke et al., 2012) 47,761 41 0.04
D11 Churn prediction Telco (Verbeke et al., 2012) 5,000 18 0.14
DI2 Profitability scoring E-Commerce DMCO05 50,000 119 0.06
D13 Profitability scoring E-Commerce DMCO06 16,000 24 0.49
D14 Profitability scoring ~ Mail-order UCI-Adult 48,842 17 0.24
D15 Profitability scoring ~ Mail-order DMC04 40,292 107 0.21
D16 Response modeling Charity KDD98 191,779 43 0.05
D17 Response modeling E-Commerce Ccp 121,511 82 0.06
D18 Response modeling E-Commerce Cp 214,709 77 0.13
D19 Response modeling E-Commerce Cp 382,697 76 0.09
D20 Response modeling  E-Commerce DMCI10 32,428 40 0.19
D21 Response modeling Finance Cp 45,211 16 0.12
D22 Response modeling Finance UCI-Coil 9,822 13 0.06
D23 Response modeling ~ Mail-order DMCO1 28,128 106 0.50
D24 Response modeling  Publishing Cp 300,000 30 0.01
D25 Response modeling Retail DMCO07 100,000 17 0.24

*

CP = consultancy project with industry; DMC = Data Mining Cup* (the number gives the year of the
competition); KDD = ACM KDD Cup?® (the number gives the year of the competition); UCI-xxx = UCI Machine
Learning Repository® (with xxx being the name of the data set in the repository).

™ P(+1) denotes the prior probability of response (e.g., the fraction of customers who accept an offer).

4.2  Benchmark models

Alternative targeting models represent a natural benchmark to the proposed PCES approach. We
consider 1) the well-known logit model, due to its popularity in marketing (e.g., Cui et al., 2006), ii)
random forest, due to its success in previous benchmarking studies (e.g., Lessmann et al., 2015; Verbeke
et al., 2012), and iii) a best base model (BBM) benchmark, which is given by the strongest individual
targeting model from the model library. A common denominator among these benchmarks is that they
account for the problem context during model selection. For each marketing data set, we select among

the 20 / 35 / 877 candidate logit / random forest / base models (see Table 1) the one giving maximal

4 http://www.data-mining-cup.com
3 http://www.sigkdd.org/kddcup/index.php
6 http://archive.ics.uci.edu/ml/
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campaign profit (1). Prior work finds a selection of prediction models using business performance
measures to substantially improve decision quality (e.g., Glady et al., 2009; Verbeke et al., 2012;
Verbraken et al., 2014). Therefore, we expect the benchmarks to be challenging.

The ensemble selection approach of Caruana et al. (2006) contributes a fourth benchmark. Here, we
call it profit-agnostic ensemble selection (PAES) and employ a statistical loss function (i.e., NNL) for
base model selection. Therefore, PAES and PCES differ in their approach to select base models the the
final ensemble in a profit-agnostic as opposed to a profit-conscious manner. This configuration allows
us to attribute performance differences between PAES and PCES to the fact that the latter accounts for
business performance during model development.

The last benchmark draws inspiration from Bhattacharyya (1999). It optimizes the coefficients of a
linear regression function, which discriminates between responsive and non-responsive customers,
using a genetic algorithm (GA). We use (1) as fitness function implying that the GA maximizes
campaign profit. Focusing exclusively on business goals during model development, GA is a useful
benchmark to support the design of PCES as an integrated modeling framework that balances statistical
and economic considerations. To implement the GA benchmark, we reuse the settings of Bhattacharyya

(1999) and set the population size, crossover rate, and mutation rate to 50, 0.7, 0.2, respectively.

4.3  Configuration of ensemble selection

Caruana et al. (2006) propose some modifications of basic ensemble selection. One extension
consists of an additional bagging step. More specifically, instead of selecting a single set of base models
from the full model library, Caruana et al. (2006) subsample the library, select one ensemble from each
subsample, and average over the resulting ensembles. The basic and bagged ensemble selection
algorithms represent alternative strategies to develop a model. We consider both strategies and
determine the superior approach for each data set by means of model selection. For bagged ensemble
selection, we consider subsample sizes of 5, 10, and 20 percent of the model library and 5, 10, and 25

bagging iterations. Importantly, PAES and PCES are treated in the same way to avoid bias.
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5  Empirical Results

The experimental design provides test set predictions from PCES and benchmark models across the
marketing data sets. Many indicators are available to assess predictive accuracy. We suggest that a
comparison in terms of business performance is most meaningful from a managerial point of view (e.g.,
Leitch & Tanner, 1991) and thus assess targeting models in terms of campaign profit (1).

Recall that (1) is a function of campaign size, 7. In the following, we consider 7 a decision variable
and let a targeting model find the profit maximal solution to (1) over /(7) and z. This implies that the
model determines which and how many customers to target and thus how much to spend on the
campaign. Verbeke et al. (2012) recommend this approach and proof its effectiveness. We follow their
advice but consider a different profit function to cover a larger scope of marketing applications.

To cover a broad range of application scenarios, we consider multiple settings for the monetary
campaign parameters offer cost (¢) and return per accepted offer (). More specifically, it is sufficient to
vary r because the profit function (1) is invariant to a linear scaling. Rescaling (1) such that c=1 and
r’=r/c does not change the profit maximal solution. We thus fix ¢ at $1 and consider settings of » = $2,
$3, $5, $10, $15, $25, $50, $75, and $100. These values capture a range of targeting applications.
Smaller values represent settings where the ratio between offer cost and return per accept is moderately
skewed. Such scenario might occur when companies contact customers through a call-center or when
selling products by means of printed catalogs in the mail-order industry. Both channels involve
considerable offer costs (e.g., to produce a premium catalog), which could explain moderate imbalance
between r and c. High skewness between these parameters arises in online marketing where digital
channels facilitate reaching customers at very low costs. Larger values of » capture such applications.
Given that larger values of 7 give an incentive to increase campaign size, we constrain the optimization
of (1) such that T < 0.5. Given that marketing campaigns typically target a small fraction of responsive
customers (e.g., Blattberg et al., 2008), contacting more than half of the customer base seems unrealistic.

Table 3 reports the win-tie-loss statistics of PCES vs. benchmark models for the 11 (return to cost
ratios) * 25 (data sets) = 275 comparisons. Consider, for example, the comparison of PCES versus BBM
at =$2. A value of 22 suggests that PCES achieves higher campaign profit than BBM on 22 out of 25

data sets. BBM outperforms PCES on two data sets and both models tie on one data set. We also compare
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the statistical significance of profit differences using the Friedman test (see bottom of Table 3). For the
results of Table 3, a X2 value of 823.5 indicates that we can reject the null hypothesis of equal
performance (p-value <0.000). This allows us to proceed with a set of pairwise comparisons of PCES
against one benchmark to detect significant differences among individual targeting models. To protect
against an elevation of alpha values in multiple pairwise comparisons, we adjust p-values using Rom’s

procedure (Garcia et al., 2010). The last row of Table 3 reports the adjusted p-values.

Table 3: Win-Tie-Loss Statistics of PCES Versus Benchmarks in the Flexible Budget Case

PCES vs. Logit PCES vs. RF PCES vs. BBM PCES vs. GA PCES vs. PAES

$2 24 1 0 21 2 2 22 1 2 25 0 0 19 3 3
$3 24 0 1 21 1 3 22 1 2 25 0 0 22 0 3
$4 25 0 0 24 0 1 21 1 3 25 0 0 20 0 5
$5 25 0 0 23 1 1 23 1 1 24 1 0 20 0 5
$10 24 0 1 24 0 1 22 0 3 24 0 1 18 0 7
$15 24 0 1 23 0 2 18 0 7 24 0 1 12 0 13
$20 24 0 1 23 0 2 22 0 3 24 0 1 17 0 8
$25 24 0 1 24 0 1 23 0 2 23 0 2 16 1 8
$50 23 0 2 23 0 2 22 0 3 24 0 1 16 0

$75 23 0 2 21 1 3 21 0 4 24 0 1 13 0 12
$100 23 0 2 19 1 5 20 0 5 23 1 1 11 1 13

Total 263 1 11 246 6 23 236 4 35 265 2 8 184 5 86
96% 0% 4% 89% 2% 8% 86% 1% 13% 96% 1% 3% 67% 2% 31%

p-value* 0.000 0.000 0.000 0.000 0.000

* The p-values correspond to pairwise comparisons of PCES and one benchmark, using Rom’s procedure to
protect against an elevation of alpha values in multiple pairwise comparisons (Garcia et al., 2010). Multiple
pairwise comparisons are feasible since a X2 value of 823.5 suggest that we can reject the null hypothesis of
equal performance among models (Friedman test) with high confidence (p-value < 0.000).

Table 3 reveals evidence that PCES produces significantly higher campaign profits than any of the
benchmark models (p-values of pairwise comparisons consistently less than 0.000). Recall that the
purpose of the logit, RF, and BBM benchmark is to reflect common marketing practices where a set of
candidate models is developed and the strongest candidate (in terms of (1)) is selected. This is exactly
the modeling paradigm advocated in previous studies (e.g., Glady et al., 2009; Verbeke et al., 2012;
Verbraken et al., 2012). Accordingly, the results of Table 3 indicate that introducing the relevant notion
of model performance during model development (as opposed to model selection) further increases
performance. However, this interpretation requires further qualification since the superiority of PCES
may also come from the ability of ensemble selection to create powerful prediction models. Indeed, the
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PAES benchmark, an ordinary ensemble selection method, turns out to be the strongest benchmark.
However, although benefitting from the same large base model library as PCES, a PAES-based customer
targeting gives significantly less profit compared to using PCES. In particular, we find the latter to
produces higher profits in 184 out of 275 comparisons (67 percent). Before examining the relative
performance of alternative targeting models in more detail, we note that PCES also outperforms the GA
benchmark (i.e., a direct profit maximization) with substantial margin.

To obtain a clearer view on the degree to which PCES increases business performance, we calculate
the profit implication resulting from using PCES or a benchmark model for campaign targeting. In
particular, we consider a fictitious company with a customer base of N = 100,000 customers; and let the
per-customer return from accepted offers, », and offer costs to contact customers, ¢, be $10 and $1,
respectively. Table 4 depicts the campaign profits emerging from a model-based targeting per marketing
data set. Given that we consider campaign size a decision variable, we let every targeting model select
its individually best setting 7. This way, Table 4 compares targeting models in terms of the maximal
campaign profit they can produce for given r and c. Bold face highlights the best result per data set. The
optimized campaign sizes corresponding to the results of Table 4 are available in Table 5. The last row
of Table 4 summarizes the observed results in the form of an estimate of the expected profit increase of
PCES over a benchmark. The estimation procedure comes from Garcia et al. (2010) and is based on the
median profit difference between PCES and a benchmark model across the data sets. Given the scope
of the empirical study (e.g., 25 real-world data sets from different industries), we consider the resulting

value a reliable estimate of the profit that a targeting model achieves on unseen data.

Table 4: Comparison of Campaign Profit at Model-Optimized Campaign Sizes

Campaign profit [$]

Data Logit RF BBM  GA PAES  PCES
DI 1,660 1,596 1,764 1,532 1,874 1,846
D2 61,612 75816 75989 62953 75,725 176,001
D3 -2 -83 88  -104 76 137
D4 2,992 2,832 2,832 -3,052 2,852 26
D5 -7,096  -6,766  -6,766 -7,096  -6,666 25
D6 -1,017 -997 977  -1,027 -997 159
D7 35,578 39,598 39,778 35,098 40,408 40,618
D8 2,966 2,926 3270 2,756 3,404 3,121
D9 699 469 862 509 999 1,139

D10 442 876 839 590 901 984
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D11 1,491 2,000 2,022 1,534 2,020 2,058

D12 -8 17 -33 -310 84 428
D13 14,700 18,270 18,270 15,110 18,390 18,810
D14 34,421 34,755 35,067 34,385 35,107 35,185
D15 21,642 21,842 22,012 21,353 21,982 21,073
D16 572 6 572 208 527 726
D17 9,121 9,283 9,690 9,568 10,690 10,087
D18 64,096 101,186 105,824 63,438 105,649 106,418
D19 85,123 119,158 122,949 91,387 123,881 123,804
D20 10,424 10,614 10,564 9,954 10,654 10,884
D21 12,877 14,534 14,632 12,708 14,498 14,725
D22 210 323 325 242 305 357
D23 29,044 29,544 30,154 28,454 30,074 30,004
D24 -1 -2 14 1 13 27
D25 47,440 53,210 53,210 50,380 53,770 53,660
Estimated profit 657 407 233 756 178

increase (in percent)*  (22%)  (14%) (7%)  (27%)  (5%)
* The estimation is based on (Garcia et al., 2010). We first use their contrast estimation approach to calculate
the expected profit improvement of PCES over a benchmark, and then convert this contrast to a percentage
through dividing by the benchmark’s median (across data sets) campaign profit.

Table 4 reemphasizes that PCES typically produces higher profits than benchmark models. This is
especially apparent when examining the performance contrast shown in the last row of Table 4. Based
on the observed results, we expect PCES to increase campaign profit by five percent compared to the
most challenging benchmark and up to fourteen percent compared to random forest, a state-of-the-art
classifier much credited for high accuracy (e.g., Lessmann et al., 2015; Verbeke et al., 2012). Profit
increases of five percent above are managerially meaningful, especially for larger companies and run
many campaigns (Neslin et al., 2006). It is also noteworthy that using the logit model for targeting, an
approach still popular in industry, entails substantial opportunity costs. Compared to this benchmark,
PCES produces higher campaign profits across all data sets and can be expected to increase profits by
22 percent on average. With respect to a direct optimization of campaign profit during model
development, which the GA benchmark embodies, Table 4 reveals that corresponding results are the
weakest in the comparison. Last, PCES is the only approach that avoids losses. For some data sets (e.g.,
D4-D6) the optimization of 7 on validation data gives a poor result for the hold-out test data on which
we calculate campaign profit. In particular, Table 5 reveals that all benchmarks select 7equal to its upper
bound of 0.5 on D4 - D6. This leads to large campaigns that result in a loss for the given setting of r:c

=10:1. PCES, on the other hand, benefits from its ability to adapt the ensemble forecast when optimizing
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7, because it employs (1) during model development. This allows PCES to recognize that the level of
predictive accuracy vis-a-vis the return to cost ratio might not facilitate profitable targeting. Thus, PCES
selects7 close to zero. Finally, Table 5 evidences a trend of PCES to recommend smaller campaigns.
The median value 7=16.66 for PCES is much less than the second-smallest value of 7=25.47 for RF.
Smaller campaigns are appealing since they require less resources and might be better targeted to
customer interests. For example, despite recommending smaller campaigns, PCES produces higher

profits than RF on all data sets, which signals higher predictive accuracy and, in turn, better targeting.

Table 5: Model-Optimized Campaign Sizes

Model-optimized campaign sizes [%o]

Data Logit RF BBM GA PAES PCES
Dl 41.12  49.68 35.58 40.09 38.20 43.18
D2 2578 1621 15.67 26.15 1549 15.86
D3 0.35 6.67 433 4.0l 7.25 4.76
D4 50.00 50.00 50.00 50.00 50.00 0.17
D5 50.00 50.00 50.00 50.00 50.00 0.34
D6 50.00 50.00 50.00 50.00 50.00 1.97
D7 50.00 50.00 50.00 50.00 50.00  50.00
D8 46.16 47.70 4634 46.87 49.26  50.00
D9 7.70 1270 16.04 13.20 23.10 16.96
D10 5.07 6.56 5.81 5.44 7.69 5.74
D11 3843 1547 1440 39.77 14.00 15.10
D12 14.14 1526 17.36 12.35 16.18 7.86
D13 50.00 50.00 50.00 50.00 50.00 50.00
D14 48.52 49.62 4859 49.83 48.85 47.68
D15 50.00 50.00 50.00 49.93 50.00 45.34
D16 3.83 0.03 3.83 0.71 2.57 4.27
D17 22.04 1739 17.61 1544 19.52  16.66
D18 36.83 20.09 17.74 35.45 17.56  17.03
D19 19.52  13.03 12.14 18.99 12.55 12.04
D20 50.00 50.00 50.00 50.00 50.00 50.00
D21 28.99 2547 2697 30.64 25.78 2795
D22 23.65 1544 14.63 18.51 23.02  10.77
D23 50.00 50.00 50.00 50.00 50.00 50.00
D24 0.00 0.01 0.04 0.06 0.04 0.04
D25 50.00 50.00 50.00 50.00 50.00  50.00

Median 3843 2547 2697 39.77 25.78  16.66

The results of Table 4 and Table 5 stem from a campaign with specific setting of returns and offer

costs. To confirm generalizability of results to other campaign settings, we next examine the magnitude
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of PCES-induced profit improvements across the full range of campaign parameters » = $2, $3, $5, $10,
$15, $25, $50, $75, and $100 (with ¢ = $1). To that end, we rerun model development (for PCES and
GA) and model selection (logit, RF, BBM, PAES) for all data sets and settings of ». We then use the
same contrast estimation approach (see last row Table 4) to calculate percentage profit improvements
of PCES over its benchmarks (Garcia et al., 2010). Figure 2 depicts the corresponding results. Given
that smaller settings of » lead to large improvements over weaker benchmarks, we split Figure 2 into

two panels which show results for all settings of 7 and those above five, respectively.
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Figure 2: Expected percentage improvement in campaign profit due to using PCES for target group selection. We
estimate profit contrasts in the same way as in Table 4. Panel a) shows all settings of 7, whereas panel b) focuses
on settings of 7>5 for better readability.

Figure 2 confirms that superior performance of PCES generalizes to other settings of campaign
parameters. Above zero improvements demonstrate that PCES consistently produces higher profits than
the benchmarks. GA is again the weakest benchmark in the comparison. Even in the scenario 7.¢=100:1,
where high imbalance between marketing returns and costs renders the targeting task relatively easy,
PCES increases campaign profits by more than five percent compared to GA. This confirms that direct
maximization of campaign profits is not a suitable approach to develop targeting models. The other
models ground on statistical learning. From Figure 2, we conclude that following corresponding
principles is essential when developing a targeting model. However, the specific adaptation that we
propose, namely to introduce campaign profits into model development, succeeds in improving the
business performance of the resulting model. Random forest, for example, recommends campaigns that

are roughly 3 — 15% less profitable compared to PCES.
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6  Discussion

The empirical analysis evidences the effectiveness of the proposed approach toward model
development. In addition, the study sheds some light on the divergence between the optimization of
statistical loss functions and business objectives for prediction model development in targeting
applications. The experimental design includes three philosophies toward model development: a direct
maximization of business performance (GA), a model selection approach, which introduces business
objectives ex-post and develops models using statistical learning (Logit, RF, BBM and PAES), and
PCES that shifts the consideration of the actual business objective to a previous modeling stage so as to
gear model development toward the ultimate goal of the marketing campaign and achieve higher fit
between the final model and the business task which it is meant to support.

Observed results suggest the direct approach to be least effective. In fact, a simple logit model
consistently outperforms GA. The logit and GA model both construct a linear classifier. Better
performance of the former evidence that model development through minimizing a statistical loss
function is preferable to a direct maximization of business performance. Well-known estimation
problems such as overfitting (e.g., Hastie et al., 2009) are a likely cause of this result. Remedies to such
problems are readily available in statistical learning. However, developing predictive decision support
models through profit maximization, the direct approach is unable to capitalize on this knowledge.

Considering the model selection approach, logistic regression, random forest, and BBM perform
better than GA but inferior to PCES. Profit improvements over these benchmarks are often substantial.
On average, PCES also recommends smaller campaigns, which indicates better targeting of PCES
campaigns. Overall, these results indicate that incorporating business goals early in the modeling process
has a sizeable positive effect on the quality of the prediction model and decision support, respectively.

One might object that a targeting model that is tuned to maximize profits will naturally give higher
profits than another model tuned to minimize NLL or some other loss function. Following this line of
reasoning, one might question the fairness of the comparison in terms of campaign profit (1). However,
it is important to recall that targeting is a prediction problem. We aim at predicting customer responses
to marketing messages. In predictive modelling, it is crucial to develop a model on one set of (training)

data and test it on a different, ‘fresh’ set of (test) data (e.g., Shmueli & Koppius, 2011). Given disjoint
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data sets for model training and evaluation, it is wrong to assume that maximizing profit on the training
set will naturally give higher profit on the test set. This is apparent from the poor results of the GA
benchmark and, more importantly, statistical learning theory (e.g., Vapnik & Kotz, 2006).
Consequently, the experimental design ensures a fair comparison.

However, it is still interesting to examine the performance of PCES across different evaluation
measures to shed lights on the antecedents of its success in the above comparison. In particular,
maximizing campaign profit (1) over /(7) and 7, our evaluation criterion differs notably from typical
accuracy indicators and statistical loss functions. We hypothesize that the advantage of PCES over
benchmark models decreases when the ensemble selection criterion (i.e., business performance
measure) is more similar to the loss functions that standard targeting models embody. To test this, the
paper is accompanied by an e-companion, which provides results for additional performance measures;
namely AUC and TDL (online Appendix II’) and campaign profit under a budget constraint (online
Appendix III"). With respect to the similarity of these measures to standard indicators of predictive
accuracy and statistical loss, we suggest an ordering of the form AUC < TDL < Q(I(t),T = const.) <
Q(l(t), 7). AUC captures a classifier’s ranking performance. It is a standard accuracy indicator, which
we consider relatively closest to standard loss functions like NLL (Bequé et al., 2017). TDL is related
to AUC but focuses on ranking performance among of subset of customers (e.g., Neslin et al., 2006).
Thus, we consider it more distinct from model-internal loss functions. The same logic applies to
campaign profit under a budget constrain (Q(I(t), T = const.)), just that this measure, in addition,
depends on cost and benefit parameters which introduce further differences. Last, the evaluation
measure we consider above, campaign profit with flexible marketing budget, Q(I(7), ), includes the
additional decision variable T and is therefore most distinct from NLL or other standard loss functions.

Below, we summarize results from the e-companion and illustrate how the relative performance
advantage of PCES develops across different performance measures. In particular, Table 6 reports the
estimated performance improvement over a benchmark model across AUC, TDL, and campaign profit

with fixed and flexible budget, whereby we use the same approach toward performance contrast

7 Available online at https://bit.ly/pces_appendix.
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estimation as in Table 4 (Garcia et al., 2010). The e-companion provides a more detailed analysis of

AUC, TDL performance in Appendix II¥, and campaign profit with budget constraint in Appendix III®.

Table 6: Comparison of PCES and Benchmarks Across Statistical and Monetary Performance Measures

AUC TDL Q(l(t),T = const.) Ql(1), 1)
Logit 7.31% 25.79% 18.10% 22.00%
RF 1.39% 3.58% 2.30% 14.00%
BBM 0.28% 3.10% 1.00% 7.00%
GA 6.23% 21.91% 15.60% 27.00%
PAES 0.00% 0.14% 0.30% 5.00%

We compute the relative performance improvements of PCES over benchmarks in the same way as in Table 4
using the contrast estimation approach of Garcia et al. (2010).

Table 6 supports the view that PCES is most effective if an application specific (business)
performance measure embodies a different notion of model performance than a model-internal loss
function. Performance improvements are especially pronounced when assessing model performance in
terms of campaign profit with flexible budget. On the other hand, improvements over the strongest
competitor, PAES, vanish when using the AUC for performance evaluation, and are marginal for TDL
and campaign profit under a budget constraint. The results for other benchmarks follow a similar trend,
whereby PCES still provides a sizeable advantage in most cases. Overall, we take Table 6 as further
evidence that incorporating profit consideration into model development is valuable. More specifically,
the efficacy of PCES increases with decreasing similarity between a targeting model’s internal loss

function and a relevant measure of business performance.

7  Summary

We set out to develop a modeling approach that integrates principles of statistical learning with
business objectives in customer targeting. To achieve this, we propose PCES, which first estimates a set
of statistical prediction models and then selects from this library a subset of models so as to maximize
campaign profit. The results that we obtain from a comprehensive empirical study confirm the
effectiveness of this approach. We observe PCES to predict customer responsiveness more accurately

than benchmarks and show that the profit of a marketing campaign increases when using PCES for target

8 Available online at https://bit.ly/pces_appendix.
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group selection. We also find this advantage over competitors to increase with decreasing correlation

between a model-internal loss function and a relevant measure of business performance.

7.1  Implications

The results of our study have several implications. First, integrating business goals into the modeling
process is interesting from a theoretical point of view. A large number of prediction methods have been
developed in the literature. Well-grounded in the theory of statistical learning, such methods facilitate
the development of empirical prediction models in diverse application settings. Generality, however,
has a cost. General purpose methods disregard the characteristic properties of specific applications such
as profit in campaign planning. On the other end, a common approach toward decision support in the
literature involves the development of tailor-made models that fully reflect the requirements of a given
application. However, tailor-made models also suffer limitations. In the case of predictive modeling, a
possible shortcoming may be that they are less accurate, for example because they fail to automatically
account for nonlinear patterns. We consider our results a stimulus to rethink approaches to develop
prediction models. In particular, we call for the development of modeling methodologies that are both
widely applicable and aware of characteristic application requirements. To some extent, the proposed
PCES framework is such an approach. For example, to adapt PCES to a decision problem other than
targeting, we can replace the campaign profit function (1), which guides ensemble member selection,
with an objective function that captures the peculiarities of the novel business application.

Second, from a managerial perspective, the key question is to what extent novel targeting models
add to the bottom line. In this sense, an implication of our study is that it is feasible and effective to
develop targeting models in a profit-conscious manner. Improvements of campaign profit of several
percent, which we observe in many experimental settings, are managerially meaningful and indicate that
PCES is a useful addition to campaign planners’ toolset. Its application seems especially rewarding in
settings where companies contact a large number of customers, conduct many campaigns, and/or run
campaigns with high frequency, all of which is common in digital marketing and e-commerce.

A third implication of the study is related to the way in which targeting models are commonly
employed in academia and industry. In particular, a model selection approach, which involves

developing a set of candidate models and selecting one best model for deployment should be avoided.
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Our study suggests that an appropriately chosen combination of (some of these) alternative models using
ensemble selection is likely to increase predictive accuracy and, more generally, model performance.
Furthermore, introducing an additional selection and combination step into the modeling process
provides an excellent opportunity to account for business objectives during model development.
Finally, a fourth implication is that the development of targeting models requires little human
intervention. Typical modeling tasks include, for example, testing different variables, transformations
of variables to increase their predictive value, and testing alternative prediction methods. Using an
ensemble selection framework, campaign managers can easily automate these tasks. They only need to
incorporate the candidate models that represent choice alternatives into the model library. The selection
strategy will then pick the most beneficial model combination in a profit-conscious manner. This frees
campaign planners from laborious, repetitive modeling tasks and unlocks valuable resources, which can
be spend on tasks that truly require creativity and domain knowledge. In the case of predictive modeling,

engineering informative features is a good example for such task.

7.2 Future Research

Clearly, the study exhibits limitations that open up avenues for further research. Most importantly,
we do not account for heterogeneity among customer values. We examine a range of settings in which
the return per accepted offer differ. However, the return is always the same across customers. Given that
customer spending differs in many practical applications, it is important to examine customer-dependent
returns in future research.

Future research could also extend the proposed modeling framework. In particular, PCES is a black-
box approach that does not reveal how customer characteristics influence predictions. Such insight is
important to understand which factors determine customers’ reactions toward marketing offers.
Therefore, developing approaches that unlock the PCES black-box and clarify how variables influence

predictions seems to be a fruitful avenue for future research.
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