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The accuracy of asymmetric GARCH model
estimation
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Amélie Charles, Audencia Business School

Abstract

This paper reviews eight software packages when estimating asymmetric 
GARCH models (from their default option). We consider the numerical con-sistency 
of GJR-GARCH, TGARCH, EGARCH and APARCH estimations with Normal and 
Student distributions as well as out-of-sample forecasting accuracy, using the model 
confidence set procedure. We show that results are clearly software-dependent for 
both asymmetric volatility models, especially for the t-ratios. The out-of-sample 
forecast results show that the differences in estimating symmetric and asymmetric 
GARCH models imply slight differences in terms of forecast accuracy, not 
statistically significant, except in few cases from the QLIKE loss function. Further, 
the results indicated that the different specifi-cations of the asymmetric GARCH-type 
models used by the different packages appear to have no significant effect on their 
forecast accuracy.

Keywords: EGARCH, GJR-GARCH, TARCH, APARCH, accuracy, forecasting, 
software.
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1 Introduction

Understanding the behavior of volatility in financial assets is important to risk manage-

ment, derivative pricing and hedging, market making, market timing, portfolio selec-

tion, and many other financial activities. Autoregressive conditionally heteroscedastic

(ARCH) models introduced by Engle (1982) and extended to GARCH models, in-

dependently, by Bollerslev (1986) and Taylor (1986), were developed to capture the

two most important stylized facts of returns, which are heavy-tailed distributions and

volatility clustering. GARCH estimation is widely available in a number of software

packages (e.g., EViews, Gauss, Gretl, Matlab, Ox, R, Rats, Stata,S-Plus, TSP).

A number of reviews have investigated the accuracy, ease to use, availability of docu-

mentation and other attributes of the softwares available for the estimation of univari-

ate (symmetric) GARCH models (see, e.g., Brooks, 1997; McCullough and Renfro,

1999; Brooks et al., 2001). McCullough and Renfro (1999) and Brooks et al. (2001,

2003) discussed numerical accuracy issues associated with maximizing the GARCH

log-likelihood in several commercial softwares. They found that parameter starting

values, initializations for the error and conditional variance-covariance series, opti-

mization algorithm choice, use of analytic or numerical derivatives, and convergence

criteria all influence the resulting numerical estimates of the GARCH parameters. As

argued by Brooks et al. (2003) “a thorough examination of all of these issues is virtu-

ally impossible since the packages on the whole simply do not give sufficient detail on

these points”.1

There is extensive empirical evidence about the existence of an asymmetric

response of volatility to positive and negative past returns. In particular, increases

in volatility are larger when previous returns are negative than when they have the

same magnitude but are positive. The asymmetric volatility property is explained in

1McCullough and Renfro (1999) compared seven (anonymous) packages by using the FCP

GARCH benchmark of Fiorentini et al. (1996) on the daily percentage nominal returns for the

Deutschemark/British pound exchange rate of Bollerslev and Ghysels (1996). Brooks et al. (2001)

used the same dataset by comparing nine software packages (EViews 3.1, Gauss 3/Fanpac, LIMDEP

8.0, Matlab 11, Microfit 4.0, Rats 4.3, SAS 6.12, Shazam 8.0, and TSP 4.5.). Laurent and Peters

(2002) also compared GARCH accuracy between their Ox-G@RCH 2.3 package and four econometric

softwares (EViews 4, PcGive 10, S-Plus 6 and TSP 4.5).

2



the literature in terms of the leverage effect (Black, 1976; Christie, 1982; Schwert,

1989) and the volatility feedback effect (French et al., 1987; Campbell and Hentchel,

1992; Bollerslev et al., 1992).2

There is a large number of non-linear GARCH models, including EGARCH (Nelson,

1991), GJR-GARCH (Glosten et al., 1993), TGARCH (Rabemananjara and Zakoian,

1993) and APARCH (Ding et al., 1993) which allows for asymmetry or leverage ef-

fect, so that the conditional variance can be affected differently by positive and neg-

ative shocks of the same magnitude. Asymmetric GARCH estimation is also widely

available in a number of commercial software packages (e.g., EViews, Gauss, Matlab,

Ox, Stata) and there are also a few free open source implementations (e.g., R, Gretl).

However, the asymmetric GARCH models can be expressed in various different forms

according to the software packages. This is a severe problem that makes interpretation

and diagnostic checking of the model specification extremely difficult. To the best

of our knowledge, Brooks et al. (2001) and Alexander (2008) are the only studies

which compare the numerical consistency of asymmetric GARCH models, especially

EGARCH and/or GJR-GARCH models. Brooks et al. (2001) examine EGARCH es-

timation and forecasting for four econometric softwares (EViews, Microfit, Rats and

SAS), and Alexander (2008) compares the estimation of GJR-GARCH and EGARCH

models from EViews and Matlab using daily log returns on the FTSE 100.

The aim of this paper is to review a number of the most widely used software

packages when estimating asymmetric GARCH models. In this sense, our contribution

extends the work of Brooks et al. (2001) who have shown how different software

packages can lead to quite different results in the standard GARCH model using

updated versions of software packages and new free packages. We consider the

numerical consistency of the four most widely estimated asymmetric univariate

models of conditional volatility, namely the GJR-GARCH, TGARCH, EGARCH

and APARCH models with Normal and Student distributions3, using a number of

2Hansen and Lunde (2005) compared 330 GARCH-type models and concluded that in the case of the

Deutschmark-Dollar exchange rate, no model beats the GARCH(1,1) model, whereas the GARCH(1,1)

model is clearly inferior to asymmetric GARCH models in the case of IBM returns.
3See Table 3 for a presentation of the GARCH-type models and distributions available in the

different software packages.
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different econometric software packages.4 We thus evaluate eight software packages:

five commercial packages, including Financial Analysis Package 3.0 (FANPAC) for

GAUSS 17, Econometrics Toolbox for Matlab 13a, G@RCH 8 package in Ox 8.1,

Stata 14 and EViews 9, one semi-commercial package with the free Oxford MFE

Toolbox for Matlab, and two free packages with the rugarch package for R 3.4 and

Gretl 2018a.

To evaluate the software accuracy in estimating a GARCH model Brooks et al. (2001)

used the GARCH model proposed by Fiorentini et al. (1996) as benchmark. Brooks

et al. (2001) argue that “there is a need for a benchmark and also some consensus

as to what forms of the model are preferable, and the latter should be estimable by

all packages” (p.54). Unfortunately, it is currently not the case as the asymmetric

GARCH models can be expressed in various different forms according to the software

packages. Brooks et al. (2001) argue that the establishment of benchmarks for other

standard non-linear models is long overdue. Therefore, we compare the estimation of

asymmetric GARCH models from financial time series by using the default option of

the software packages. All the packages analyzed use conditional maximum likelihood

to estimate the models. We also address the issue of whether the differences in

parameter estimation between packages make a difference from a practical perspective,

by evaluating the out-of-sample forecasting accuracy. For that, we extend the work

of Brook et al. (2001) in several ways: (i) we use updated versions of the software

packages which have been modified (improved) since their study; (ii) we analyze

four asymmetric GARCH-type models with Normal and Student distributions; (iii) we

compare the estimation by trying to “harmonize” the options of the packages; (iii) we

estimate the models on small, medium and large samples; and (iv) we compare their

forecast performance by using the model confidence set (MCS) procedure proposed

by Hansen et al. (2011)5 and the one-step ahead out-of-sample volatility forecasts

produced automatically by the packages and by own codes.

The remainder of the paper is structured as follows. Section 2 introduces the GARCH,

4In this paper we do not deal with detailed descriptions of the packages, their user-friendliness,

flexibility, speed . . . See Brooks (1997) for these issues.
5Brooks et al. (2001) is the only study which compares the out-of-sample forecasts of the conditional

variance produced by a GARCH model estimated from different packages. They only compare the

forecast values from the packages for one to eight step ahead forecasts.
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GJR-GARCH, TGARCH, EGARCH and APARCH specifications. Section 3 briefly

discusses the maximum likelihood estimation of these models. The comparison in

estimating GARCH-type models from the default option of the packages is presented

in Section 4. Section 5 proposes a robustness check with a Student distribution,

small and medium sample sizes, and ‘harmonized’ options for all the packages. The

forecasting accuracy is displayed in Section 6. Section 7 proposes a discussion and

concludes.

2 GARCH-type models

The GARCH model was developed independently by Bollerslev (1986) and Taylor

(1986a). The GARCH model extends the ARCH model by allowing the conditional

variance to be dependent upon previous own lags.

Consider the returns series rt , defined by rt = logPt− logPt−1, where Pt is the observed

price at time t, follows a Normal GARCH(1,1) model defined as

rt = c+ εt (1)

εt = σtzt , zt ∼ i.i.d.N(0,1), (2)

σ
2
t = ω+αε

2
t−1 +βσ

2
t−1 (3)

where εt denotes the ‘market shock’ or ‘unexpected return’, and is commonly taken

as the mean deviation (rt − r), with r is the sample mean.6 The parameters should

satisfy ω > 0, α≥ 0 and β≥ 0 to guarantee the positivity of the conditional variance.

The stationarity of the process (second-order moment condition) is achieved when the

restriction α+β < 1 is satisfied. Ling and McAleer (2002a, 2002b) have derived the

regularity conditions of a GARCH(1,1) model, defined as follows: E[ε2
t ] =

ω

1−α−β
< ∞

if α + β < 1, and E[ε4
t ] < ∞ if kα2 + 2αβ + β2 < 1, where k is the conditional

fourth moment of zt .7 Ng and McAleer (2004) show the importance to verify these

conditions. The sum of α and β quantifies the persistence of shocks to conditional

variance, meaning that the effect of a volatility shock vanishes over time at an

exponential rate.
6Note that the OLS estimate of c is r.
7Under the assumption of Normal distribution k = 3 and thus the condition becomes 3α2 + 2αβ+

β2 < 1. See Ling and McAleer (2002a, 2002b) for other distributions.
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2.1 The GJR-GARCH model

The GJR-GARCH model developed by Glosten, Jagannnathan et Runkle (1993) is

constructed to capture the asymmetric leverage volatility effect. Specification for the

conditional variance of GJR-GARCH(1,1) model is

σ
2
t = ω+α ε

2
t−1 + γ I(εt−1 < 0) ε

2
t−1 +β σ

2
t−1

= ω+(α+ γ I(εt−1)) ε
2
t−1 +β σ

2
t−1 (4)

where I(εt−1 < 0) = 1 if εt−1 < 0, and 0 otherwise. The volatility is positive if ω > 0,

α > 0, γ≥ 0, α+γ≥ 0 and β≥ 0. The process is defined as stationary if the constraint

α+β+(γ/2) < 1 is satisfied. Ling and McAleer (2002b) have derived the regularity

conditions for a GJR-GARCH(1,1), defined as follows: E[ε2
t ] < ∞ if α+β+ δγ < 1,

and E[ε4
t ]< ∞ if kα2 +2αβ+β2 +βγ+ kαγ+ kδγ2 < 1.8

Asymmetry exists if γ > 0, i.e. positive and negative shocks of equal magnitude

have different effects on conditional volatility. The asymmetry is observed as the im-

pulse (α + γ) of negative shocks, which is larger than the impulse (α) of positive

shocks. In this model, good news and bad news have different effects on the condi-

tional variance: good news has an impact of α while bad news has an impact of (α+γ).

The GJR-GARCH model nets the GARCH model when γ = 0.

We can find a different parametrization for the GJR-GARCH model in other

software packages. In Stata the dummy variable is defined as I(εt−1 > 0) = 1 if

εt−1 > 0, and 0 otherwise. Therefore, we have for Stata

σ
2
t = ω+(αStata + γStata)ε

2
t−1 +βσ

2
t−1 if εt−1 ≥ 0

= ω− γStataε
2
t−1 +βσ

2
t−1 if εt−1 < 0 (5)

while we have from the equation (4) for Matlab-MFE, Matlab-Ek, Gauss-Fanpac, R-

rugarch and Ox-G@rch

σ
2
t = ω+ γMatlabε

2
t−1 +βσ

2
t−1 if εt−1 ≥ 0

= ω− (αMatlab + γMatlab)ε
2
t−1 +βσ

2
t−1 if εt−1 < 0 (6)

8Under a Normal distribution and a Student-t(ν) distribution, with ν > 5, δ = 1
2 . See Ling and

McAleer (2002a, 2002b) for other distributions.
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Finally, we obtain the following correspondence

αMatlab = αStata + γStata

γMatlab = −γStata

The GJR-GARCH model is specified in Gretl without dummy variable as follows:

σ
2
t = ω+α(|εt−1|− γεt−1))

2 +β σ
2
t−1

We have the following correspondence9

αMatlab = αGretl(1− γGretl)

γMatlab = 4αGretlγGretl

2.2 The TGARCH model

A similar way to model asymmetric effects was introduced by Zakoian (1994), and

developed further in Rabemananjara and Zakoian (1993), by defining the threshold

GARCH (TGARCH) model:

σt = ω+α
+

ε
+
t−1 + γ

−
ε
−
t−1 +βσt−1

= ω+αI(εt−1 ≥ 0)εt−1 + γI(εt−1 < 0)εt−1 +βσt−1 (7)

where ε
+
t = εt if εt > 0, ε

+
t ≡ 0 otherwise, ε

−
t ≡ εt−ε

+
t , and I(εt−1 < 0)= 1 if εt−1 < 0,

and 0 otherwise. The TGARCH model is similar to the GJR-GARCH model but the

volatility is specified in terms of σt instead of σ2
t . Therefore, the TGARCH model does

not impose any positivity restrictions on the volatility coefficients. However, in such

a case, σt is no longer assumed to be positive which can be problematic in terms of

probabilistic properties on the standardized innovations. The conditions for existence

of moments can be found in He and Teräsvirta (1999a).

9Note that Gretl provides estimation of GJR-GARCH parameters for both parametrizations.
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We can find different parametrizations for the TGARCH model among the software

packages. In Gretl, Eviews10 and R-rugarch the parametrization is given by

σt = ω+αGretl (|εt−1|− γGretlεt−1)+βσt−1 (8)

which can be re-written as

σt =

{
ω+αGretl(1− γGretl)εt−1 +βσt−1 if εt−1 ≥ 0

ω−αGretl(1+ γGretl)εt−1 +βσt−1 if εt−1 < 0

Matlab-MFE use a dummy variable in the equation of the TGARCH(1,1) model,

defined as

σt = ω+αMatlab|εt−1|+ γMatlabI(εt−1 < 0)|εt−1|+βσt−1 (9)

where I(εt−1 < 0) = 1 if εt−1 < 0, and 0 otherwise. This equation can be re-written as

σt =

{
ω+αMatlabεt−1 +βσt−1 if εt−1 ≥ 0

ω− (αMatlab + γMatlab)εt−1 +βσt−1 if εt−1 < 0

We have the following correspondence between Gretl/Eviews/R-rugarch and

Matlab-MFE

αMatlab = αGretl(1− γGretl)

γMatlab = 2αGretlγGretl

In Stata the dummy variable is defined as I(εt−1 > 0) = 1 if εt−1 > 0, and 0

otherwise. Therefore, the parametrization is given by

σt = ω+(αStata + γStata)εt−1 +βσt−1 if εt−1 ≥ 0

= ω− γStataεt−1 +βσt−1 if εt−1 < 0 (10)
10Note that EViews proposes the estimation of a TGARCH model but its TGARCH model is

estimated on σ2
t and not on σt as defined in Zakoian (1994) and Rabemananjara and Zakoian (1993). Its

TGARCH specification is rather similar to the GJR-GARCH model of Glosten et al. (1993). However,

it is possible to estimate the TGARCH model in Eviews from the APARCH model by setting δ = 1.

The relationship between the parametrization of the TGARCH defined by Rabemananjara and Zakoian

(1993) and that used in Gretl, Eviews and R-rugarch, which is derived from an APARCH model, is

given by: α+ = αGretl(1− γGretl) and γ− =−αGretl(1+ γGretl).
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We obtain the following correspondence between Matlab-MFE and Stata11

αMatlab = αStata + γStata

γMatlab = −γStata

2.3 The EGARCH model

Nelson (1991) proposes the exponential GARCH model (EGARCH), which can also

capture volatility leverage. The EGARCH(1,1) model can be expressed in various

different forms according to the software packages. This is a severe problem that

makes interpretation and diagnostic checking of the model specification extremely

difficult.

• Ox-G@RCH:

ln(σ2
t ) = ω+(1−βL)−1(1+αL)g(zt−1)

• Gauss-Fanpac / Matlab-MFE / Matlab-Econometrics / R-rugarch / Stata:

ln(σ2
t ) = ω+θ1 (|zt−1|−E(|zt−1|))+θ2zt−1 +β ln(σ2

t−1)

• SAS:

ln(σ2
t ) = ω+αg(zt−1)+β ln(σ2

t−1)

• EViews / Gretl:

ln(σ2
t ) = ω+θ1(|zt−1|)+θ2zt−1 +β ln(σ2

t−1)

with g(zt) = θ1 (|zt |−E(|zt |))+ θ2zt , where θ1 (|zt |−E(|zt |)) denotes the magnitude

effect, and θ2zt the sign effect. Thus, if θ2 < 0 then negative innovations induce higher

volatility than positive innovations of the same magnitude (asymmetry). E(|zt |) de-

pends on the assumption made on the unconditional density of εt . For the Normal

distribution E(|zt |) =
√

2/π. The specification of the volatility in terms of its loga-

rithmic transformation implies that the parameters in this model are not restricted to

11Rodríguez and Ruiz (2012) use another parametrization for the TGARCH(1,1) model, given

by σt = ω + α|εt−1|+ γεt−1 + βσt−1. Carnero and Perez (2018) give the relationship between the

parameters of this parametrization and those used in Matlab-MFE, Stata and Gretl (see Appendix).
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positive values. As EGARCH model does not impose any positivity restrictions on

the volatility coefficients a sufficient condition for the stationarity of the EGARCH

model is |β|< 1. He et al. (2002) have considered the fourth moment structure of the

EGARCH(1,1) model.12

The EGARCH(1,1) specification expressed in Ox-G@RCH is given by:

ln(σ2
t ) = ω(1−β)+(1+αL)g(zt−1)+β ln(σ2

t−1)

implying that ln(σ2
t ) is a function of two lags of standardized residuals:

ln(σ2
t ) = ω(1−β)+θ1 (|zt−1|−E(|zt−1|))+θ2zt−1

+αθ1 (|zt−2|−E(|zt−2|))+αθ2zt−2 +β ln(σ2
t−1)

To estimate the conditional variance as a function of one lag of standardized residu-

als the EGARCH(0,1) specification has to be chosen in Ox-G@RCH. Note there is a

difference in the intercept term specification between Ox-G@RCH and Matlab-MFE,

Matlab-Ek, Gauss-Fanpac, R-rugarch and Stata, with the following correspondence:

ωMatlab = ωG@RCH(1−βG@RCH).

The EGARCH model with the Normal distribution is slightly differently estimated

in EViews and Gretl, with the term E(|zt |) =
√

2/π removed from the following

specification:13

ln(σ2
t ) = ω+θ1|zt−1|)+θ2zt−1 +β ln(σ2

t−1)

Therefore, the intercept term in the conditional variance equation will differ by a fac-

tor of θ1
√

2/π compared with that of Matlab/Gauss/R/Stata, with the following corre-

spondence: ωMatlab = ωEViews/Stata +θ1
√

2/π.

12Some authors make a distinction between asymmetry, referred to as the different impacts on

conditional volatility of positive and negative shocks of equal magnitude, and leverage effect, regarded

as the negative correlation between returns shocks and subsequent shocks to volatility (McAleer, 2014;

Martinet and McAleer, 2018); Chang and McAleer (2017) propose the regularity conditions that an

EGARCH(1,1) model obtained from a random coefficient complex nonlinear moving average process,

should fulfill to capture asymmetry and/or leverage effects.
13The software packages advance some computational advantages to remove the term

√
2/π out of

the summation operator.
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2.4 The APARCH model

Ding, Granger et Engle (1993) propose the asymmetric power ARCH (APARCH)

model which nests several ARCH-type models. The APARCH(1,1) model is defined

as follows

σ
δ
t = ω+α(|εt−1|− γεt−1)

δ +βσ
δ
t−1

where ω > 0, α ≥ 0, and β ≥ 0. Parameter δ (δ > 0) plays the role of a Box-Cox

transformation of the conditional standard deviation σt . γ, with −1 < γ < 1, reflects

the asymmetric effect. A positive (resp. negative) value of the γ means that past

negative (resp. positive) shocks have a deeper impact on current conditional volatility

than past positive shocks. The properties of the APARCH model have been studied by

He and Teräsvirta (1999b) and He et al. (2008).

The APARCH model includes several ARCH extensions as special cases, including

the GARCH(1,1) model when δ = 2 and γ = 0, the TGARCH(1,1) model when δ = 1,

and the GJR-GARCH(1,1) model when δ = 2.14

This equation is the parametrization used in Eviews, Ox-G@arch, Gretl and R-

rugarch. In MFE-Matlab and Stata the parametrization is slightly different with a

positive sign for the asymmetric parameter γ, given by

σ
δ
t = ω+α(|εt−1|+ γεt−1)

δ +βσ
δ
t−1

3 Estimating GARCH models

3.1 Maximum likelihood estimation

The most commonly used method in estimating the vector of unknown parameters θ

of GARCH-type models is the method of maximum likelihood (ML) estimation. The

function of the parameters set is called the log-likelihood function.15

14Note that some packages specify the GJR-GARCH (Gretl) and TGARCH (Eviews, Gretl and R-

rugarch) models from the parametrization of the APARCH model.
15See Zivot (2009) and Xekalaki and Degiannakis (2010) for a discussion on the ML estimations for

the GARCH-type models.
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Given that εt = σtzt , the log-likelihood function L of the standard normal distribution

is

L =
T

∑
t=1

lt =−
1
2

T

∑
t=1

(
ln(2π)+ ln(σ2

t )+ z2
t
)

where lt =−1
2

(
ln(2π)+ ln(σ2

t )+ z2
t
)
, and T is the number of observations.

As discussed in McCullough and Renfro (1999) and Brooks et al. (2001), there are

several practical issues to consider in the maximization of likelihood function. Starting

values for the model parameters θ = (ω,α,β) need to be chosen and an initialization

of ε2
t and σ2

t must be supplied.16

Once the log-likelihood is initialized, it can be maximized using numerical

optimization techniques. The most popular methods of optimization make use of exact

or approximated Hessian matrices, and iterative procedure that updates the current

values of the estimates θ̂i+1 at iteration i+1. A standard approach based on the exact

Hessian matrix is the Newton-Raphson algorithm.17 The iterative procedure is given

by

θ̂i+1 = θ̂i−λiH(θ̂i)
−1G(θ̂i) (11)

where θ̂i denotes the vector of estimated model parameters, λi is a scalar (called step)

which may be fixed or variable, G(θ̂i) =
∂L(θ̂i)

∂θ̂i
is the gradient (or score) vector of the

log-likelihood function (first derivative of the log-likelihood function with respect to

the vector of unknown parameters), and H(θ̂i) =
∂2L(θ̂i)

∂θ̂i∂θ̂′i
is the Hessian matrix (or a

suitable approximation of it) of the log-likelihood function (second derivative of the

log-likelihood function with respect to the vector of unknown parameters) all evalu-

ated at iteration i.

An alternative procedure based on approximated Hessian matrix is the Berndt-

Hall-Hall-Hausman (BHHH) algorithm (Berndt et al., 1974) which only uses first

16Almost all packages that estimate GARCH-type models use the sample variance as default for

initializing the variance process (σ2
t = T−1

∑
T
t=1 ε2

t ), except EViews which uses backcast exponential

smoothing, and Matlab-MFE which uses a local average. Pelagatti and Lisi (2009) analyzed the

precision of QML estimates under different choices of initialization and sample dimension.
17Analytic or numerical derivatives may be used for the Newton-Raphson algorithm. Fiorentini et al.

(1996) provided algorithms for computing analytic derivatives for GARCH models.
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derivatives. The BHHH algorithm is similar to the Newton-Raphson algorithm but

instead of using the Hessian matrix of second derivatives H(θ̂i) it is based on an

approximation formed by the sum of outer product of the gradient (OPG) vectors for

the contribution of each observation to the objective function.18 The Hessian matrix

may be approximated by

−H(θ̂i)≈ B(θ̂i) =
T

∑
t=1

Gt(θ̂i)G′t(θ̂i) =
T

∑
t=1

∂lt
∂θi

∂lt
∂θ′i

where Gt(θ̂) is the gradient of the log-likelihood function for each observation. The

BHHH algorithm can be modified by employing the Marquardt correction which adds

a correction matrix to the sum of the OPG vectors (Hessian approximation) as follows

B(θ̂i) =
T

∑
t=1

Gt(θ̂i)G′t(θ̂i)−aI

where I is the identity matrix, and a a positive number chosen by the algorithm.

Another common approach based on approximated Hessian matrix is the Quasi-

Newton methods which are to build up an estimate of the Hessian at each iteration,

starting from an initial estimate. The inverse of the Hessian matrix is given by

H(θ̂i) = H(θ̂i−1)+Ci−1

where C is a correction matrix. The Quasi-Newton algorithms differ only in their

choice of this matrix, and the most widely used are the DFP algorithm proposed by

Davidson (1959) and Fletcher and Powell (1963) or the BFGS algorithm developed by

Broyden (1970), Fletcher (1970), Goldfarb (19790) and Shanno (1970).19

18Computational speed is increased by not calculating the actual Hessian matrix at each iteration

for each time step, but the approximation can be weak when the log-likelihood function is far from its

maximum, thus requiring more iterations to reach the optimum.
19The Quasi-Newton BFGS and DFP methods are like Newton-Raphson method in that they use

both first and second derivative information, however, the Hessian matrix is approximated, reducing the

computational requirements. These methods take more iterations than the Newton-Raphson algorithm

but the use of an approximation produces a gain because it can be expected to converge in less overall

time.
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The estimates that maximize the conditional log-likelihood L are called the

maximum likelihood (ML) estimates. Under suitable regularity conditions, the ML

estimates are consistent and asymptotically Normally distributed and an estimate of

the asymptotic covariance matrix of the ML estimates is constructed from an estimate

of the final Hessian matrix from the optimization algorithm used. However, the

appropriate regularity conditions have only been done for some GARCH models.20

Typically, the GARCH models are represented as unconstrained optimization

problems. However, if the likelihood maximization must be achieved subject to non-

linear constraints in the vector of unknown parameters, i.e. lower and upper bounds

on the parameters, like the stationary constraint 0 < α+ β < 1 in the GARCH(1,1)

model or the constraint −1 < γ < 1 in the GJR-GARCH(1,1) model, constrained

nonlinear programming (NLP) methods can be used, such as the sequential quadratic

programming (SQP) algorithms.21

3.2 Estimators of variance-covariance matrix

It is important to know how are computed the standard errors of the parameter

estimators. The different methods for computing standard errors for GARCH

coefficients can lead to different standard error estimates, and thus to important

implications for test significance on the parameters.

The variance-covariance matrix of the parameter estimators when the variables

are assumed to be Normally distributed is calculated as the inverse of the Fisher

information matrix I(θ̂), defined as

Q(θ̂) = I(θ̂)−1

20The asymptotic properties, in particular the asymptotic normality, of the quasi-maximum likelihood

estimator (QMLE) hold under mild conditions for GARCH models (e.g., Lee and Hansen, 1994;

Berkes et al., 2003; Francq and Zakoian, 2004) and for GJR-GARCH models (Hamadeh and Zakoian,

2011). However, the statistical properties for the QMLE of the EGARCH(1,1) parameters are not

available under general conditions, but rather only for special cases under highly restrictive conditions

(Wintenberger, 2013; Kyriakopoulou, 2015; Martinet and McAleer, 2018).
21An overview of SQP methods can be found in Nocedal and Wright (1999) and Fletcher (2013).
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It is diagonal in the case of a Normal density but otherwise it can be a complicated

non-diagonal matrix, and thus when MLE is applied to non-Normal distributions the

computations of the covariance matrix of estimators can be difficult. In general two

estimators of the Fisher information matrix can be calculated. The first estimator is the

expected values of the first derivatives of the log-likelihood function. It is known as

the BHHH estimator or OPG estimator:

I(θ̂)≈ E
[

∂lnL
∂θ

∂lnL
∂θ′

]
The second estimator, called Hessian-based estimator, is the expected values of the

negative of the second derivatives of the log-likelihood function:22

I(θ̂) =−E
[

∂2lnL
∂θ∂θ′

]
=−E

[
H(θ̂)

]
These two estimators are asymptotically equivalent, but they could give different

results in finite samples. Available evidence suggests that in small or moderate sized

samples, the Hessian is preferable (Greene, 2007). However, in most cases, the BHHH

estimator will be the easiest to compute.

If the log-likelihood function is maximized using Hessian-based algorithms, the

Fisher information matrix can be obtained as a by-product of the optimization pro-

cedure, such as Newton-Raphson and BHHH methods. On the other hand, if Quasi-

Newton methods, such as BFGS method, are employed, the estimated Hessian matrix

is not guaranteed to converge to its exact value when approaching the optimum. Using

those methods to obtain the estimated Fisher information matrix may thus be mislead-

ing.23

The assumption of Normally distributed standardized innovations is often violated

by the data, especially in finance. This has motivated the use of alternative distribu-

tional assumptions (e.g., Student-t or Skewed-Student-t distributions). Alternatively,

22Often the expected value of the second derivatives of the log likelihood have to be approximated by

taking their actual values, rather than the expected values at the maximum likelihood estimates (Efron

and Hinkley, 1978).
23Note that, although the Fisher information matrix is known to be block diagonal, the efficient

implementation of Newton or Newton-like algorithms requires the full Hessian matrix, which is not

block-diagonal in small samples (Calzolari et al., 1993).
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the MLE based on the Normal density may be given by a quasi-maximum likelihood

(QML) interpretation. Bollerslev and Wooldridge (1992) showed that the maximiza-

tion of the Normal log-likelihood function results in QML estimates of the parameter

vector θ that are consistent and asymptotically Normally distributed even when the dis-

tribution of zt is non-Normal. In addition, Bollerslev and Wooldridge (1992) derived

an asymptotic covariance matrix for the QMLEs that is robust to conditional non-

Normality.24 This matrix is estimated using both matrices of second order derivatives

and outer products of first derivatives:

Q(θ̂) = H(θ̂QML)
−1B(θ̂QML)H(θ̂QML)

−1

where θ̂QML is the QML estimator of θ, which is also called the “sandwich” estimator,

and the coefficient standard errors as the (robust) Bollerslev-Wooldridge standard

errors.

Under correct specification the QML estimator is equivalent to the other covariance es-

timators, as it gives asymptotically the inverse of the Fisher information matrix (thus,

block-diagonal).

We evaluate eight of the most widely used software packages when estimating

asymmetric GARCH models: Financial Analysis Package 3.0 (Fanpac) for Gauss 17

(Gauss-Fanpac), Econometrics Toolbox for Matlab 13a (Matlab-EK), the free Oxford

MFE Toolbox for Matlab (Matlab-MFE)25 (Sheppard, 2009), G@RCH 8 package in

Ox 8.1 (Ox-G@RCH) (Laurent and Peters, 2001; Laurent, 2009), EViews 7, Stata

14, and two free software packages with GIG (Garch In Gretl) 2.21 package for Gretl

2018a (Lucchetti and Balietti, 2011) and rugarch 1.4-0 package for R 3.4 (R-rugarch)

(Galanos, 2018).26

Table 1 summarizes the MLE in the default option of the econometric packages

in terms of numerical optimization techniques and standard errors of the estimated

24The QMLE is generally close to the exact MLE for symmetric departures from Normality.

However, Engle and Gonzales-Rivera (1991) showed that the loss in efficiency may be quite high for

non-symmetric distributions.
25The Oxford MFE Toolbox is the follow on to the UCSD_GARCH toolbox.
26Another package is available for GARCH modelling in R with fGarch, which is a part of the

Rmetrics suite. However, this package only estimates GARCH and APARCH models.
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parameters. In terms of optimization routine, Gauss-Fanpac, Matlab-MFE, Gretl and

Ox-G@RCH use a version of the BFGS algorithm whereas EViews uses the BHHH

algorithm with the Marquart correction. Stata switches between the BHHH and BFGS

algorithms.27 Finally, Matlab-Econometrics and R-rugarch apply a SQP algorithm.28

In terms of standard errors for GARCH coefficients, Gauss-Fanpac, EViews, Stata

and Matlab-Econometrics compute standard ML standard-error estimates (OPG or

Hessian-based estimators) whereas Ox-G@RCH and Gretl displays the Bollerslev-

Wooldridge robust QML standard errors. Matlab-MFE and R-rugarch provide both

standard (Hessian-based estimator) ML and robust QML standard errors.

4 Comparison in estimating GARCH-type models

In this section, the five GARCH models previously described are fitted to represent

the evolution of the volatility of two series of daily returns. The series analyzed are

daily returns of the FTSE100 index observed from April 1, 2003 to December 31, 2007

(1195 observations). This series is downloaded from the webpage of the Oxford-Man

Institute of Quantitative Finance (Heber et al., 2009).29

It is important when comparing econometric softwares to have an appropriate dataset,

especially to avoid the misleading effects of outliers on the estimation of the volatil-

ity.30 For that, we have checked that all observations are lesser than 5σ̂t , where σ̂t is

an estimate of the conditional standard deviation.31 All packages should be able to es-

27By default, Stata performs 5 iterations with the BHHH algorithm followed by 15 iterations with

the BFGS algorithm, and then switch back to BHHH for five iterations, and so on. Lombardi and Gallo

(2002) show that the use of a mixed algorithm can provide some gains in terms of iterations and RMSE.
28We use the following optimization packages: the maximization package maxlikmt2.0 for Gauss

17; the maximization package fminunc for Matlab-MFE; the optimization toolbox fmincon for Matlab-

Econometrics, where the function solves a quadratic programming subproblem at each iteration, and

updates an estimate of the Hessian of the Lagrangian at each iteration using the BFGS formula; the

SQP solver solnp of Ye (1997) based on an augmented Lagrange multiplier method with a SQP interior

algorithm, implemented in R by Ghalanos and Theussl (2011).
29The data are available on the following website: http://realized.oxford-man.ox.ac.uk/data.
30It is well known that the outliers may pose difficulties for the identification and estimation of

GARCH models governing the conditional volatility of returns (e.g., Franses and Ghijsels, 1999;

Carnero et al., 2007, 2012, 2016).
31Carnero et al. (2012) and Rodriguez and Ruiz (2012) advocate this approach to detect outliers in
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timate symmetric and asymmetric GARCH models, i.e. a constant with GARCH(1,1)-

type errors.

Tables 4 and 5 give default estimation results for the GARCH, GJR-GARCH,

TGARCH, EGARCH and APARCH models. As in Brooks et al. (2001) we do not

intend to ‘pass judgement’ on the packages that are good or not, since defaults may

differ between packages in terms of initializations, starting values for parameters, con-

vergence tolerances . . . . Rather, we only display default results for comparison with

one another.

The GARCH models. The intercepts in the conditional variance equation (ω) are

similar for all the packages for both returns. However, it is the GARCH parameters

where the differences across packages appear. The parameters on the lagged squared

errors (α) are close for Gauss-Fanpac, Matlab-Econometrics, Ox-G@RCH, Stata,

Gretl and R-rugarch at around 0.71, and higher than for EViews and Matlab-MFE

at around 0.61. We find similar results for the parameters on the lagged conditional

variance, but the values are higher for EViews and Matlab-MFE than those for the

other packages. Note that the levels of persistence (α+β) are broadly in agreement

for all the packages, with a persistence around 0.988.

For the t-ratios associated with the coefficients (Tables 4 and 5) it is evident that

the differences across packages are more marked than they were for the parameter es-

timates. For example, the t-ratios for the GARCH parameters given by EViews, Stata

and Matlab-Econometrics (based on OPG estimator) are around two times higher than

those by Ox-G@rch, Gretl and R-rugarch (based on robust QMLE estimator). How-

ever, none of these differences are important for tests of significance since all of the

parameters are statistically significant at the 1% level under all packages, except the

intercept for Matlab-MFE and Ox-G@rch. The differences in t-ratios are arguably un-

surprising since a similar result was found by Brooks et al. (2001) for GARCH(1,1)

models, who argued that differences in default calculation methods for the standard er-

rors can explain these differences. However, these results should be take with caution

because the robust QML estimator is prone to give very different results in the case

where the standardized innovations are not Normal. As a consequence, it is likely that

GARCH models.
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the standardized innovations issued from the series are not Normal because softwares

that implement robust standard errors give very far away results. Inference, and thus

t-ratio must be biased for the other software packages.

The GJR-GARCH models. As for the GARCH model the intercepts are broadly in

agreement for all the packages. The parameters on the lagged conditional variance

are close for Gauss-Fanpac, Matlab-Econometrics, Ox-G@RCH, Stata, Gretl and

R-rugarch, and lower than for EViews and Matlab-MFE. The parameters on the

lagged squared errors are also the same for Gauss-Fanpac, Matlab-Econometrics, Ox-

G@RCH, Stata (with α∗), Gretl and R-rugarch, but its values are negative or null

for EViews and Matlab-MFE, which do not satisfy the condition α > 0 to have the

volatility positive.32 The asymmetric parameters (γ) are close for Gauss-Fanpac,

Matlab-Econometrics, Ox-G@RCH, Stata (with a negative sign), Gretl and R-rugarch,

and for EViews and Matlab-MFE.

When one considers the t-ratios, the discrepancies between methods used by each

of the packages become far more apparent. For example, the t-ratio on the asymmetric

term in the conditional variance equation (γ) varies from 1.44 to 5.79. These strong

differences are important for test significance since the asymmetric parameters are not

significant at the 10% level under Ox-G@RCH and R-rugarch, and significant for the

other packages. This is strong difference can be explained by the (possible) non Nor-

mality of standardized innovations.

The EGARCH models. Even if the constant terms in the conditional variance

equation are different across the packages due to the different forms to express the

EGARCH models, once we modify the values of the coefficients (ω∗) in a consistent

manner across the packages as defined in Section 2.2 we find that the intercepts are

broadly in agreement for all the packages and returns.33 The parameters on the lagged

32For Matlab-MFE the zero value for the lagged squared errors can be explained by the fact that its

maximization package fminunc stopped the optimization with the following message “because the size

of the current step is less than the selected value of the step size tolerance”. For Eviews by changing

its default option in initializing of the conditional variance by the sample variance we found the same

values of the parameters that those obtained from the other packages.
33Alexander (2008) compared the estimation of GARCH(1,1), GJR-GARCH(1,1) and EGARCH(1,1)

models from EViews and Matlab using daily log returns on the FTSE 100 over the period 2003-2007.
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squared errors are close for all the packages. However, the discrepancies become

apparent for the two asymmetric parameters in the conditional variance equation. For

Gauss-Fanpac, Matlab-Econometrics, Gretl, Stata and R-rugarch the coefficient values

of the magnitude effect (θ1) are close to one another, while those of EViews, Matlab-

MFE and Ox-G@RCH are typically up to 30% away from the three others. We also

find differences for the parameters of the sign effect (θ2) for all the packages, which

vary between -0.070 and -0.037, except for Gauss-Fanpac, Gretl, Stata and R-rugarch

where the coefficients are very close. The differences across the packages for the

EGARCH models can be explained by both the various specifications of the model

and the estimation methods used by each of the packages.

As found previously the results also show differences across packages for the t-

ratios. For example, the t-ratios for the lagged conditional variance displayed by

EViews are around 3 times higher than those by Ox-G@rch and R-rugarch. However,

these differences are not important for tests of significance since all of the parameters

are statistically significant at the 1% level under all packages, except Stata with the

parameter θ2.

The TGARCH models. All the coefficients are different between all the packages,

except for the parameter ω. When taking the corresponding coefficients for α and γ

we find similar values for Gretl and Stata. The differences are more important in terms

of t-ratios, and the TGARCH model is rejected for R-rugarch since the asymmetric

parameter is not significant at the 10% level.

The APARCH models. As for the TGARCH model the coefficients are different

across the packages. Nevertheless, we find similarities for the values of parameters for

some packages, such as α, β and γ are close for Stata and Gretl, α for Matlab-MFE and

R-rugarch, β and γ for Eviews and Matlab-Econometrics. Note that the power parame-

ter δ is close between the packages, ranging between 1.4 and 1.8, except for R-rugarch

which is almost two times higher. The results also show differences for the t-ratios,

Her results showed that the parameter estimates are similar, except that the EViews optimizer for

EGARCH model converges to a solution that is not sensible because the estimated long term volatility,

given by ln(σ2) = ω

1−β
, is too low. However, if we use the intercept term modified ω∗ we find that the

long term volatility estimated by both packages is close.
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with strong effects on the significance of the parameters for Matlab-MFE, R-rugarch

and Gretl (based on robust QMLE estimator) which reject the APARCH model.34

Overall, for the asymmetric GARCH-type models the GJR-GARCH and APARCH

models are not rejected only for Gauss-Fanpac/Matlab-Econometrics and Eviews/Stata,

respectively, whereas all EGARCH and TGARCH models are not rejected, whatever

the packages, except Stata and R-rugarch, respectively.35 Further, the strong differ-

ences in terms of t-ratios between the packages using the OPG estimator and those

using the robust QML estimator is likely due to the fact taht the standardized innova-

tions are not Normal.

5 Robustness

5.1 Student distribution

As shown in Table 2 the FTSE returns are characterized by non-Normality, with

evidence of significant negative excess skewness and kurtosis. We re-estimate the five

GARCH-type models with a Student distribution, which is the non-Normal distribution

available for all the software packages (see Table 3). The results are given in Tables

10 and 11.

The GARCH models. We find similar results than those obtained with a Normal dis-

tribution, namely the parameter ω is again similar for all the packages and the parame-

ter α and β are similar for Ox-G@rch, Matlab-Ek, R-rugarch, Stata and Gretl whereas

they are lower and higher, respectively, for Eviews and Matlab-MFE. Opposed to the

results obtained when the standardized innovations are assumed Normal, the results

for the t-ratios are now slightly different when the standardized innovations follow a

Student distribution since the t-ratios based on QML estimator are slightly lower than

those based on OPG estimator. The parameter η of the Student distribution is close for

34Note that Ox-G@rch does not estimate this model due to problem of convergence.
35By analyzing different asymmetric models Rodriguez and Ruiz (2012) show that when the

parameters satisfy the positivity, stationarity, and finite kurtosis conditions, the dynamics that the GJR-

GARCH model can represent are heavily limited while those of the EGARCH and TGARCH models

are less restricted.
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all the packages.

The asymmetric models. The results are also identical to those with a Normal

distribution in terms of comparison of parameters for the GJR-GARCH, EGARCH

and TGARCH models. The differences in terms of t-ratios are lesser across the

packages. However, some t-ratios based on the QML estimator are strongly affected.

For example, Ox-G@rch and Gretl do not reject the GJR-GARCH model as the

asymmetric parameter γ is become significant at the 10% level or Matlab-MFE rejects

the TGARCH model as the parameter α is become not significant at the 10% level.

Finally, all the packages reject the APARCH model with a Student distribution.

Table 2: Descriptive statistics of FTSE returns (1195 observations).

mean (%) Std. dev. (%) Skewness Kurtosis JB test

0.020 0.643 -0.214∗ 5.278∗ 148.2∗

Notes: ∗ denotes significance at the 5% level.

5.2 Sample size

We now evaluate the effect of the sample size on the estimations of the five GARCH-

type models by using medium and small samples, namely 500 and 100 observations,

respectively.

For the medium sample size the GARCH model is well estimated by all the

packages with similar values for all the parameters, except for Eviews and Matlab-

MFE (Tables 8 and 9). For these both packages their values of the parameter on

the lagged squared errors (α) are very different (0.013 and 0.004 for Eviews and

Matlab-MFE, respectively) compared to those of the other packages (0.025) and their

t-ratios are not significant. However, only few asymmetric models are not rejected

with a Normal distribution (the GJR-GARCH model for Matlab-Econometrics and the

EGARCH models for Eviews and Ox-G@rch) because some parameter estimations

are not significant and positivity or stationarity constraints are not satisfied.

When analyzing Tables 6 and 7 for the small sample size we observe that the

results are worst since almost all the GARCH-type models are rejected, except the
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EGARCH (Matlab-MFE and R-rugarch) and TGARCH (R-rugarch) models, whatever

the distribution. 36 Note that in most models Gauss-Fanpac, Ox-G@rch and Stata

do not succeed to estimate the parameters due to problem of convergence. This result

confirms those obtained by Ng and Lam (2006) and Hwang and Pereira (2006) showing

that the estimation of the GARCH-type models is dramatically affected by the sample

size.

5.3 Identical algorithm and variance-covariance estimator

We now compare the accuracy of the packages by using the same optimization

algorithm and variance-covariance estimator. This comparison can be interesting when

a study estimate the volatility of asset returns using the GARCH-type models available

in an econometric package from the previous options and another study compare these

estimations with other GARCH-type models not available in the previous package

(see Table 3), as a robustness study by reanalysis (Clements, 2017). For that we use

the BFGS algorithm and the Hessian-based estimator. The choice of these options

is guided by their availability in all the packages, except for Matlab-Econometrics.

We also use the sample variance as option for initializing the variance process. The

other options, such as parameter starting values, are not harmonized because they are

impossible to modify in some packages. The results are given in Tables 12 and 13.

For the GARCH model all the packages estimate the same values for the

parameters and similar values for the t-ratios. We obtain similar results for the

GJR-GARCH model, with one difference in terms of t-ratios for the parameter α

estimated by Stata likely due to the different parametrization used by this package. The

differences for the t-ratios are more important for the EGARCH models, even if the

values of the parameters are similar. For example, the parameter θ2 is not significant

for R-rugarch whereas it is significant for the other packages. For the TGARCH

and APARCH models the estimations are close for Eviews, Stata and Gretl whereas

they are slightly different for Matlab-MFE and R-rugarch, respectively. These results

show that the parametrization of the asymmetric models can be important, sometimes

dramatically with the rejection of the models.37

36Note that all the GARCH-type models with a Student distribution are rejected. The results are given

in the online Appendix.
37It would be interesting to determine a benchmark for the parametrization of the asymmetric models
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6 Forecasting comparison

One way to produce dynamic out-of-sample volatility forecasts, is to output an out-

of-sample forecast for a one-day horizon, and then assess model forecast performance

by out-of-sample one-step ahead prediction errors. The models are re-estimated every

trading day, thus aiming at a closer to real world forecast accuracy. The models are

estimated using the first 4-year period, from April 1st 2003 to December 31st 2006

(T = 942 observations), and the out-of-sample forecasts of the conditional variance

are calculated for the last year, from January 2, 2007 to December 31, 2007 (H = 253

).

The one-step ahead forecast for T +1 is given for each model by

• GARCH model

σ̂
2
T+1 = ω̂+ α̂ε̂

2
T + β̂σ̂

2
T

• GJR-GARCH model

σ̂
2
T+1 = ω̂+

(
α̂+ γ̂ Î(εT )

)
ε̂

2
T + β̂ σ̂

2
T

• EGARCH model

σ̂
2
T+1 = exp(ω̂)exp(ĝ(zT )) σ̂

2β̂

T

• TGARCH model

σ̂T+1 = ω̂+
(
α̂+ γ̂ Î(εT )

)
ε̂T + β̂ σ̂T

where ε̂2
t and σ̂2

t are the fitted values for the squared error and the conditional variance

for observation t = 1, . . . ,T , with T is the last observation in the sample. One-day

out-of-sample volatility forecasts σ̂2
T+1 are obtained for the forecast horizon H, and

compared to the realized volatility (RV) as a proxy for actual volatility. Following Liu

et al. (2015) we use the 5-min calendar-time RV as RV measure, obtained from the

Oxford-Man Institute of Quantitative Finance.

but this issue is beyond the scope of this paper. Note that we have also estimated the GARCH-type

models for the medium and small samples and obtained that the asymmetric models are rejected for

both samples. The results are available in the online Appendix.
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Note that the one-step ahead forecast for the asymmetric GARCH-type models can be

slightly different according to the parametrization of these models (see Section 2).

Most of packages produce out-of-sample conditional variance forecasts auto-

matically, namely EViews (Static forecasting)38, Gauss-Fanpac (uforecast), Matlab-

Ek(forecast), Ox-G@RCH (FORECAST), Stata (predict) and R-rugarch (ugarchfore-

cast). Nevertheless, we also produce conditional variance forecast from Matlab-MFE

and Gretl.39

Patton (2011) shows that only two loss functions are robust to noise in the volatility

proxy: the mean squared error (MSE) and the loss implied by a Gaussian likelihood

(QLIKE). We thus assess volatility forecast performance by the MSE and QLIKE loss

functions, defined by

MSE =
1
H

H

∑
t=1

(
σ

2
t − σ̂

2
t
)2

QLIKE =
1
H

H

∑
t=1

(
σ2

t

σ̂2
t
− ln

(
σ2

t

σ̂2
t

)
−1
)

where σ2
t is 5-min calendar-time RV, and σ̂2

t is the forecast volatility.

However, based only on the loss function criteria, it is difficult to conclude that the

forecasting performance of one model estimated from a package dominates that of the

same model estimated from another one. To draw such conclusions, we use statistical

tests that can provide more reliable information, namely the model confidence set

(MCS) procedure proposed by Hansen et al. (2011).

The MCS procedure proposed by Hansen et al. (2011) determine the set, M ∗,

that consists of a subset of equivalent models in terms of superior predictive accuracy

(SPA, Hansen, 2005) over the other competing collections of models, M0. The MCS

procedure yields a model confidence set, M̂ ∗, which is a set of models constructed

to contain the best models with a given level of confidence. This MCS produces a

number of models with the same forecasting performance, and therefore more robust

38In EViews we have the possibility of Dynamic or Static forecasting. Dynamic forecasting performs

a multi-step forecast whereas Static forecasting performs a series of one-step ahead forecasts.
39The package GIG 2.21 for Gretl does not provide forecasts for the conditional variance for the

EGARCH model.
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forecasting than that using only one model. The t-statistic is defined as

TmaxM = max
i∈M

ti with ti =
d̄i√

v̂ar(d̄i)
(12)

where v̂ar(d̄i) denotes the estimate of var(d̄i), d̄i =m−1
∑ j∈M d̄i j, and d̄i j = n−1

∑
n
t=1 di j,t ,

with di j,t = Li,t −L j,t for all i, j ∈M0, and Li,t is a loss function (here MSE).40 The t-

statistic is associated with the null hypothesis of equal predictive ability (EPA, Hansen,

2005) H0,M : E(d̄i) = 0 for all i∈M , where M ⊂M0. The MCS is a sequential testing

procedure, eliminating at each step the worst model from M , until the null hypothesis

of EPA is accepted for all the models. If the null of EPA is rejected for M = M0,

the worst-performing model is excluded from the set M .41 The iterative procedure

stops when the null hypothesis of EPA of the models still included in the set cannot be

rejected. If H0,M is accepted at level α then the MCS is the set M̂ ∗
1−α

.42

The MSE and QLIKE values as well the MCS associated with each loss function

from the packages are presented in Tables 14-16, with a Normal distribution, a Stu-

dent distribution and using the same optimization algorithm and variance-covariance

estimator for each package, respectively. The initial model space M0 consists of 8

(GARCH) to 3 (GJR-GARCH) models estimated from the different packages. We

have excluded the APARCH models because the conditions are not satisfied for most

of the packages.43 We set the confidence level for the MCS to α = 0.20 and 0.50.

Table 14 gives the results for the Normal distribution. For the GARCH model, the

MSE values are very close for each package, which is confirmed by the MCS as all

the packages are in M̂ ∗
50%, suggesting that all the packages forecast similarly in this

40d̄i j measures the relative sample loss between the i-th and j-th models, while d̄i is the sample loss

of the i-th model relative to the average across the models in M .
41The choice of the worst model to be eliminated uses the following elimination rule: emaxM =

argmax
i∈M

ti.
42The MCS p-values are calculated using bootstrap implementation with 10,000 resamples (Hansen

et al., 2011). The MCS test is carried out using the Ox software package MULCOM of Hansen and

Lunde (2007).
43The APARCH models have been not rejected for only two packages with a Normal distribution and

no package for the Student one.
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case. For the QLIKE loss function the values are slightly different, where Matlab-

Econometrics displays the lowest value and is also the only package to be in M̂ ∗
20%.

For the asymmetric GARCH-type models the MSE and QLIKE values are close for

each package. Further, most of the packages are in M̂ ∗
20% for the MSE loss function.

However, it is not the case for the QLIKE loss function where only one package is in

M̂ ∗
20%, such as Matlab-Econometrics for the GJR-GARCH model, Gauss-Fanpac for

the EGARCH model, and Gretl for the TGARCH model.

The results obtained with a Student distribution are similar than those obtained

with the Normal distribution, whatever the GARCH-type model (Table 15). The find-

ings show that we do not obtain strong differences in terms of forecast accuracy be-

tween the packages, but only slight differences, not statistically different from the MSE

loss function, and but sometimes statistically different from the QLIKE loss function.

These differences can be due to the various specifications of the GARCH-type models

and/or the estimation methods used by each of the packages.

Finally, Table 16 displays the results by using the same optimization algorithm

(BFGS), variance-covariance estimator (Hessian-based estimator) and initialization

of the variance process to examine whether the different parametrizations of the

asymmetric GARCH models can have an effect on the forecast performance. The

results show that the MSE values are very close for all the packages and GARCH-type

models, with similar forecast accuracy as they are in M̂ ∗
50%. We obtain similar results

from the QLIKE loss function, with most of the package in M̂ ∗
20%, except for the GJR-

GARCH model. Overall, the different parametrizations used in the packages seem to

have no impact on the forecast performance.

7 Discussion and conclusion

The aim of this paper was to review a number of the most widely used software

packages when estimating symmetric and asymmetric GARCH models (using their

default option). We considered the numerical consistency of GARCH, GJR-

GARCH, TGARCH, EGARCH and APARCH estimations, with Normal and Student

distributions, as well as out-of-sample forecasting accuracy, using the model

confidence set procedure.

28



As found by Brooks et al. (2001) results are clearly software-dependent for both

asymmetric volatility models, especially for the t-ratios, which makes the results from

two different papers, which probably used different packages, not comparable. Further,

the different specifications of the asymmetric GARCH models can have an impact on

the significance of the parameters, especially for the EGARCH model.

The out-of-sample forecast results show that the differences in estimating symmetric

and asymmetric GARCH models imply slight differences in terms of forecast accu-

racy, not statistically significant, except in few cases with the QLIKE loss function.

The results indicated that the different specifications of the asymmetric GARCH-type

models used by the different packages appear to have no significant effect on their

forecast accuracy.

The aim of this study was not ’pass judgement’ on the packages that are good or

not, since defaults may differ between packages in terms of initializations, starting

values for parameters, convergence tolerances, optimization routines . . . but we can

do some recommendations for the users. Our results showed that these choices can be

important in terms of parameter values, t-ratios and, sometimes, forecasting, and thus

the results can be not comparable between the packages. However, in most of times,

the users do not give information on these options. In few cases the optimization

algorithm and the method for computing the standard errors are given, and sometimes

the package employed but not its version. The package used for the estimation is

also important to know what parametrization is used for the asymmetric GARCH-type

models. In this study we showed that the various specifications can lead to different

values of parameters for the same model, but we provided the correspondences

between the packages, making these estimations comparable. The version of the

package is also important because some options can be improved or modified. For

example, before the version 9 of Eviews the optimization algorithm in its default option

was the BHHH algorithm, and now its is the BFGS algorithm.

Overall, we think that, based on the results obtained in our study, software users should

mention the name (and version) of the package used in estimation, what the default es-

timation methods are, such as method to optimize the likelihood function, how the

standard errors are computed, and so on. This information will be also important for

reproducibility, replicability and robustness which are fundamental characteristics of
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scientific studies (Burman et al., 2010; Clemens, 2017).

Our estimation results on the small, medium and large sample sizes showed that

the estimation of GARCH-type models is sensitive to the sample size. As argued by

Ng and Lam (2006) and Hwang and Pereira (2006) we recommend using at least 700

observations for estimating the (symmetric and asymmetric) GARCH-type models.

Larger samples would be preferable but increase the presence of outliers, jumps or

breaks which can lead to misleading effects on the estimation of the volatility (see,

e.g., Franses and Ghijsels, 1999; Carnero et al., 2007, 2012, 2016).

There are no consensus on the choices of initial values, optimization routines and

standard errors computation methods. However, it would be possible to propose a

‘benchmark’ for these options in order to make the results obtained from different

packages comparable. These choices depend on the options proposed by the packages

as well as their ’flexibility’ to change the options. As we do in Section 5.3, a standard

approach could be to use the BFGS optimization algorithm, the Hessian-based

estimator for the standard errors, and the sample variance as option for initializing

the variance process.44

As suggested by Brooks et al. (2001) there is a need for some consensus as to what

forms of the asymmetric GARCH-type models are preferable, and should be estimable

by all packages, as for the GARCH model. Further, a benchmark for each asymmetric

GARCH model (GJR-GARCH, TGARCH, APARCH and EGARCH models) is also

necessary as the benchmark for the GARCH model proposed by Fiorentini et al.

(1996), namely including a specification of the parameter starting values and the

initializations for the errors and conditional variances.

44A comparison from a Monte Carlo experiment by trying various choices of initial values,

optimization routines and standard errors computation methods would be informative but it is beyond

the scope of this study. Future research is encouraged to address these issues.
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Table 3: GARCH-type models and the econometric softwares.

Softwares Ox 8.1 Eviews 9 Matlab 13a Matlab 13a Gauss 17 R 3.4 Stata 14 Gretl 2018a

Packages G@RCH 8 MFE Ek Fanpac 3.0 rugarch 1.4-0 GIG 2.21

Models

GARCH
√ √ √ √ √ √ √ √

IGARCH
√ √ √ √

GJR-GARCH
√ √ √ √ √ √ √ √

TGARCH
√ √ √ √

EGARCH
√ √ √ √ √ √ √ √

APARCH
√ √ √ √ √ √

NGARCH
√ √ √ √

AGARCH
√

AVGARCH
√ √ √

CGARCH
√ √ √

ACGARCH
√

fGARCH
√

FIGARCH
√ √ √ √

HYGARCH
√

FIEGARCH
√

FIAPARCH
√

Spline-GARCH
√

Distrib.

Normal
√ √ √ √ √ √ √ √

Student
√ √ √ √ √ √ √ √

Skew-Student
√ √ √ √ √

GED
√ √ √ √ √ √

Skew-GED
√ √

Others∗
√

Notes: IGARCH: Integrated GARCH (Engle and Bollerslev, 1986); NGARCH: Nonlinear GARCH (Higgins et Bera, 1992);

AVGARCH: Absolute Value GARCH (Taylor, 1986b); CGARCH: Component GARCH (Engle and Lee, 1993); ACGARCH:

Asymmetric Component GARCH (Engle and Lee, 1993); fGARCH: family GARCH (Hentchel, 1995); HYGARCH: HYperbolic

GARCH (Davidson, 2004); FIEGARCH: Fractionally Integrated EGARCH (Bollerslev and Mikkelsen, 1996); FIAPARCH:

Fractionally Integrated APARCH (Tse, 1998); Spline-GARCH (Engle and Rangel, 2008). ∗: the rugarch package propose

four other conditional distributions (Generalized Hyperbolic, GH; Normal Inverse Gaussian; GH Skew-Student; Johnson’s

reparametrized SU).
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Table 4: Default estimation for volatility models with Normal distribution on large

sample (1195 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

GARCH

ω coef. 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

std. 0.003 0.002 0.003 0.002 0.002 0.003 0.002 0.003

t-stat 1.60∗ 2.65 1.81 2.41 1.99 1.54∗ 2.37 1.60∗

α coef. 0.071 0.063 0.061 0.072 0.071 0.071 0.071 0.071

std. 0.024 0.011 0.020 0.011 0.016 0.024 0.012 0.024

t-stat 3.02 6.00 3.01 6.26 4.37 2.92 6.21 3.01

β coef. 0.917 0.923 0.926 0.917 0.917 0.917 0.917 0.917

std. 0.027 0.014 0.023 0.015 0.020 0.029 0.015 0.028

t-stat 33.4 68.6 39.8 62.7 46.6 31.8 62.6 33.3

LL -1045.0 -1039.2 -1039.3 -1045.1 -1041.5 -1045.0 -1045.0 -1045.0

GJR-GARCH

ω coef. 0.005 0.003 0.003 0.005 0.005 0.005 0.005 0.005

std. 0.003 0.001 0.002 0.002 0.002 0.003 0.002 0.003

t-stat 1.48∗ 2.99 1.73 2.44 1.96 1.42∗ 2.43 1.47∗

α coef. 0.046 -0.001b 0.000 0.048 0.046 0.046 0.088 0.046

α∗ coef. 0.046 -0.001 0.000 0.048 0.046 0.046 0.047 0.046

std. 0.021 0.013 0.000 0.014 0.016 0.025 0.014 0.021

t-stat 2.23 -0.09∗ 0.84∗ 3.49 2.83 1.85∗∗ 6.20 2.24

β coef. 0.921 0.952 0.955 0.921 0.921 0.921 0.921 0.921

std. 0.028 0.012 0.013 0.015 0.020 0.031 0.014 0.029

t-stat 32.5 81.4 74.5 63.7 47.0 30.0 64.1 32.4

γ coef. 0.043 0.075 0.068 0.039 0.043 0.043 -0.041 0.043

std. 0.028 0.013 0.020 0.015 0.020 0.030 0.015 0.028

t-stat 1.52∗ 5.79 3.46 2.64 2.12 1.44∗ -2.76 1.51∗

LL -1042.7 -1031.1 -1030.3 -1043.1 -1039.1 -1042.7 -1042.9 -1042.7

EGARCH

ω coef. -0.939 -0.091 -0.012 -0.013 -0.013 -0.013 -0.012 -0.135

ω∗ coef. -0.009 -0.011 -0.012 -0.013 -0.013 -0.013 -0.012 -0.012

std. 0.333 0.021 0.006 0.007 0.008 0.009 0.007 0.034

t-stat -2.83 -4.36 -2.10 -1.89 -1.66∗∗ -1.47∗ -1.76∗∗ -4.02

β coef. 0.990 0.988 0.990 0.987 0.986 0.986 0.987 0.987

std. 0.006 0.004 0.005 0.006 0.006 0.008 0.006 0.007

t-stat 176.4 260.7 191.7 174.5 155.7 130.0 174.2 134.0

θ2 coef. -0.056 -0.070 -0.061 -0.037 -0.042 -0.042 -0.042 -0.042

std. 0.019 0.012 0.019 0.011 0.016 0.025 0.012 0.021

t-stat -2.95 -5.76 -3.29 -3.29 -2.67 -1.78 -3.57 -1.97

θ1 coef. 0.115 0.100 0.101 0.154 0.154 0.154 0.154 0.154

std. 0.029 0.024 0.027 0.022 0.028 0.040 0.022 0.037

t-stat 3.92 4.24 3.79 6.87 5.42 3.82 6.89 4.15

LL -1034.8 -1030.8 -1030.7 -1043.6 -1039.5 -1043.1 -1043.1 -1043.1

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. b

means that the positivity or stationarity constraint is not satisfied.
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Table 5: Default estimation for volatility models with Normal distribution on large

sample (1195 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

TGARCH

ω coef. – 0.007 0.007 – – 0.010 0.008 0.005

std. – 0.002 0.004 – – 0.006 0.003 0.003

t-stat – 3.16 1.60∗ – – 1.71∗∗ 2.38 1.69∗∗

α coef. – 0.055 0.024 – – 0.099 0.105 0.082

α∗ coef. – 0.016 0.024 – – 0.080 0.060 0.057

std. – 0.013 0.015 – – 0.028 0.015 0.021

t-stat – 4.39 1.65∗∗ – – 3.48 7.22 3.87

β coef. – 0.945 0.944 – – 0.906 0.923 0.923

std. – 0.012 0.018 – – 0.030 0.013 0.022

t-stat – 79.1 51.7 – – 30.5 71.7 42.3

γ coef. – 0.705 0.064 – – 0.196 -0.045 0.303

γ∗ coef. – 0.078 0.064 – – 0.039 0.045 0.050

std. – 0.218 0.021 – – 0.167 0.013 0.136

t-stat – 3.24 3.09 – – 1.18∗ -3.57 2.22

LL – -1031.0 -1032.0 – – -1051.3 -1043.5 -1042.9

APARCH

ω coef. –a 0.005 0.003 – – 0.001 0.006 0.005

std. – 0.002 0.002 – – 0.003 0.003 0.003

t-stat – 2.33 1.35∗ – – 0.45∗ 1.93∗∗ 1.55∗

α coef. – 0.041 0.023 – – 0.020 0.074 0.077

std. – 0.022 0.034 – – 0.047 0.017 0.026

t-stat – 1.82∗∗ 0.82∗ – – 0.43∗ 4.50 2.95

β coef. – 0.949 0.954 – – 0.939 0.922 0.922

std. – 0.013 0.017 – – 0.038 0.014 0.025

t-stat – 75.2 55.5 – – 24.7 66.2 36.8

γ coef. – 0.769 -0.740 – – 0.152 -0.193 0.223

std. – 0.449 0.753 – – 0.091 0.074 0.170

t-stat – 1.72∗∗ -0.98∗ – – 1.67∗∗ -2.60 1.31∗

δ coef. – 1.412 1.777 – – 3.500 1.612 1.476

std. – 0.368 0.558 – – 2.400 0.497 0.630

t-stat – 3.83 3.18 – – 1.46∗ 3.25 2.35

LL – -1030.4 -1030.2 – – -1040.3 -1042.8 -1042.3

Notes: α∗ and γ∗ denote the parameters modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively.a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 6: Default estimation for volatility models with Normal distribution on small

sample (100 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

GARCH

ω coef. –a –a 0.020 0.000 0.616 0.000 –a 0.000

std. – – 0.018 0.054 0.788 0.001 – 0.062

t-stat – – 1.11∗ 0.00∗ 0.78∗ 0.00∗ – 0.00∗

α coef. – – 0.000 0.017 -0.037b 0.012 – 0.015

std. – – 0.000 0.000 0.072 0.023 – 0.052

t-stat – – 0.34∗ 0.37∗ -0.51∗ 0.52∗ – 0.29∗

β coef. – – 0.961 0.975 0.367 0.981 – 0.978

std. – – 0.020 0.105 0.810 0.024 – 0.124

t-stat – – 48.3 9.26 0.45∗ 40.2 – 7.90

LL – – -135.1 -138.3 -136.9 -137.4 – -137.5

GJR-GARCH

ω coef. –a 0.033 0.021 0.000 –a 0.014 –a 0.000

std. – 0.270 0.000 0.040 – 0.008 – 0.037

t-stat – 1.23∗ 1.11∗ 0.00∗ – 1.74∗∗ – 0.00∗

α coef. – -0.098b 0.000 0.024 – 0.022 – 0.028

α∗ coef. – -0.098 0.000 0.024 – 0.022 – 0.028

std. – 0.014 0.000 0.052 – 0.007 – 0.056

t-stat – -6.89 0.00∗ 0.47∗ – 3.02 – 0.49∗

β coef. – 1.049b 0.959 0.978 – 1.000b – 0.980

std. – 0.000 0.021 0.097 – 0.000 – 0.097

t-stat – 9537.2 45.3 10.1 – 28384.0 – 10.1

γ coef. – -0.002 0.000 -0.024 – -0.079 – -0.027

std. – 0.072 0.000 0.070 – 0.015 – 0.069

t-stat – -0.03∗ 0.00∗ -0.35∗ – -5.33 – -0.39∗

LL – -130.4 -133.5 -137.9 – -135.7 – -136.9

EGARCH

ω coef. -0.091 0.172 -0.005 -0.019 –a 0.028 -0.051 0.087

ω∗ coef. -0.051 -0.008 -0.005 -0.019 – 0.028 -0.051 -0.057

std. 0.125 0.026 0.001 0.021 – 0.000 0.101 0.166

t-stat -0.73∗ 6.63 -6.87 -0.90∗ – 365.2 -0.51∗ 0.52∗

β coef. 0.442 0.985 0.960 1.000b – 0.911 0.429 0.432

std. 0.247 0.001 0.000 0.037 – 0.001 0.650 0.238

t-stat 1.79∗∗ 1662.3 123338.0 27.0 – 948.2 0.66∗ 1.81∗∗

θ2 coef. 0.223 -0.017 -0.030 0.157 – 0.165 0.226 0.222

std. 0.114 0.040 0.002 0.106 – 0.000 0.185 0.113

t-stat 1.95∗∗ -0.42∗ -17.7 1.49∗ – 365.8 1.22∗ 1.97

θ1 coef. -0.181 -0.225 -0.353 -0.232 – -0.452 -0.182 -0.180

std. 0.181 0.015 0.002 0.154 – 0.001 0.012 0.179

t-stat -0.10∗ -14.8 -149.7 -1.50∗ – -359.7 -3.57 -1.01∗

LL -136.9 -130.3 -127.6 -135.3 – -130.8 -137.0 -136.9

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 7: Default estimation for volatility models with Normal distribution on small

sample (100 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

TGARCH

ω coef. – 0.023 0.009 – – 0.021 –a –a

std. – 0.035 0.000 – – 0.041 – –

t-stat – 0.65∗ 0.57∗ – – 0.52∗ – –

α coef. – -0.105 0.000 – – 0.034 – –

α∗ coef. – -0.105 0.000 – – 0.068 – –

std. – 0.044 0.000 – – 0.014 – –

t-stat – -2.38 0.00∗ – – 2.42 – –

β coef. – 1.056b 0.984 – – 0.948 – –

std. – 0.000 0.017 – – 0.051 – –

t-stat – 166331.9 59.2 – – 18.7 – –

γ coef. – -0.003 0.000 – – -1.000 – –

γ∗ coef. – 0.001 0.000 – – -0.068 – –

std. – 0.327 0.000 – – 0.447 – –

t-stat – -0.01∗ 0.01∗ – – -2.24 – –

LL – -130.6 -133.4 – – -138.4 – –

APARCH

ω coef. –a 0.031 0.019 – – 0.002∗ –a –a

std. – 0.039 0.023 – – 0.005 – –

t-stat – 0.79∗ 0.85∗ – – 0.30 – –

α coef. – -0.092b 0.000 – – 0.000 – –

std. – 0.079 0.000 – – 0.001 – –

t-stat – -1.17∗ 0.24∗ – – 0.00∗ – –

β coef. – 1.048b 0.964 – – 0.978 – –

std. – 0.000 0.036 – – 0.010 – –

t-stat – 178703.7 26.7 – – 102.0 – –

γ coef. – 0.057 -0.000 – – -0.999 – –

std. – 0.461 0.000 – – 0.000 – –

t-stat – 0.13∗ -0.62∗ – – -2612.8 – –

δ coef. – 0.336 1.790 – – 3.500 – –

std. – 1.669 1.177 – – 0.382 – –

t-stat – 0.20∗ 1.52∗ – – 9.17 – –

LL – -131.0 -1033.2 — – -135.0 – –

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 8: Default estimation for volatility models with Normal distribution on medium

sample (500 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

GARCH

ω coef. 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001

std. 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002

t-stat 0.34∗ 2.64 2.40 0.50∗ 0.41∗ 0.53∗ 0.50∗ 0.32∗

α coef. 0.025 0.013 0.004 0.025 0.025 0.025 0.025 0.025

std. 0.015 0.009 0.021 0.009 0.011 0.005 0.009 0.015

t-stat 1.66∗∗ 1.45∗ 0.17∗ 2.89 2.21 5.28 2.89 1.64∗∗

β coef. 0.971 0.974 0.985 0.971 0.971 0.971 0.971 0.971

std. 0.017 0.009 0.021 0.010 0.013 0.005 0.010 0.018

t-stat 56.5 114.6 48.1 97.0 74.7 186.2 97.0 55.1

LL -446.9 -438.6 -436.7 -447.0 -443.5 -446.9 -447.0 -447.0

GJR-GARCH

ω coef. –a 0.002 0.001 0.001 0.001 0.001 0.001 0.001

std. – 0.001 0.001 0.001 0.001 0.001 0.001 0.001

t-stat – 3.33 1.57∗ 0.69∗ 0.59∗ 0.73∗ 0.75∗ 0.45∗

α coef. – -0.047b 0.000 0.026 0.026 0.026 -0.000 0.026

α∗ coef. – -0.047 0.000 0.026 0.026 0.026 0.025 0.026

std. – 0.005 0.000 0.008 0.011 0.009 0.012 0.015

t-stat – -9.90 1.17∗ 3.14 2.40 2.96 -0.03∗ 1.73∗∗

β coef. – 1.005b 0.982 0.981 0.981 0.982 0.982 0.980

std. – 0.000 0.008 0.008 0.013 0.002 0.008 0.017

t-stat – 11680.0 128.6 119.1 77.8 636.9 123.6 57.1

γ coef. – 0.053 0.017 -0.024 -0.024 -0.025 0.025 -0.023

std. – 0.014 0.015 0.014 0.016 0.018 0.013 0.015

t-stat – 3.79 1.13∗ -1.72∗∗ -1.53∗ -1.36∗ 1.96 -1.52∗

LL – -433.5 -433.5 -446.1 -442.6 -446.0 -445.9 -446.1

EGARCH

ω coef. –a 0.030 -0.006 -0.007 -0.007 -0.007 -0.006 -0.041

ω∗ coef. – -0.006 -0.006 -0.007 -0.007 -0.007 -0.006 -0.006

std. – 0.000 0.001 0.007 0.004 0.002 0.004 0.048

t-stat – 248.9 -105.4 -1.63∗ -1.59∗ -4.24 -1.69∗∗ -0.87∗

β coef. – 0.997 0.999 0.997 0.997 0.997 0.997 0.997

std. – 0.002 0.000 0.003 0.004 0.001 0.003 0.005

t-stat – 484.5 24131.4 307.0 269.8 5742.0 302.9 220.8

θ2 coef. – -0.062 -0.053 0.020 0.021 0.021 0.021 0.022

std. – 0.006 0.001 0.015 0.019 0.016 0.016 0.025

t-stat – -10.1 -105.9 1.29∗ 1.10∗ 1.35∗ 1.38∗ 0.88∗

θ1 coef. – -0.046 -0.043 0.047 0.045 0.044 0.045 0.044

std. – 0.000 0.001 0.022 0.035 0.002 0.022 0.057

t-stat – -1118.6 -35.8 2.17 1.28∗ 23.5 2.05 0.77∗

LL – -425.7 -423.7 -446.9 -443.4 -446.8 -446.8 -446.8

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. ∗

means no convergence. a means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 9: Default estimation for volatility models with Normal distribution on medium

sample (500 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

TGARCH

ω coef. – 0.003 0.002 – – 0.005 0.542 0.001

std. – 0.002 0.001 – – 0.004 0.014 0.002

t-stat – 1.50∗ 1.15∗ – – 1.23∗ 39.2 0.59∗

α coef. – 0.018 0.000 – – 0.054 -0.344 0.024

α∗ coef. – 0.000 0.000 – – 0.070 -0.635 0.034

std. – 0.017 0.000 – – 0.019 0.009 0.030

t-stat – 1.04∗ 1.53∗ – – 2.79 -36.8 0.81∗

β coef. – 0.979 0.991 – – 0.921 0.712 0.977

std. – 0.014 0.007 – – 0.031 0.008 0.026

t-stat – 67.9 142.3 – – 30.0 94.6 37.3

γ coef. – 0.999 0.009 – – -0.294 -0.291 -0.405

γ∗ coef. – 0.036 0.009 – – 0.070 0.291 -0.019

std. – 1.303 0.022 – – 0.305 0.009 0.913

t-stat – 0.77∗ 0.42∗ – – -0.96∗ -32.7 -0.44∗

LL – -435.4 -431.4 – – -455.2 -760.5 -446.8

APARCH

ω coef. –a 0.004 0.002 – – –a –a –a

std. – 0.003 0.001 – – – – –

t-stat – 1.24∗ 1.55∗ – – – – –

β coef. – 0.984 0.996 – – – – –

std. – 0.014 0.003 – – – – –

t-stat – 68.4 361.5 – – – – –

γ coef. – 0.903 -0.000 – – – – –

std. – 0.456 0.000 – – – – –

t-stat – 1.98 -0.52∗ – – – – –

δ coef. – 0.272 0.626 – – – – –

std. – 0.563 0.399 – – – – –

t-stat – 0.48∗ 1.57∗ – – – – –

LL – -434.9 -431.2 – – – – –

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 10: Default estimation for volatility models with Student distribution on large

sample (1195 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

GARCH

ω coef. 0.004 0.004 0.004 0.004 –a 0.004 0.004 0.004

std. 0.002 0.002 0.002 0.002 – 0.003 0.002 0.003

t-stat 1.45∗ 2.12 1.76∗∗ 1.79∗∗ – 1.34∗ 1.79∗∗ 1.44∗

α coef. 0.059 0.052 0.050 0.059 – 0.059 0.059 0.059

std. 0.019 0.013 0.015 0.014 – 0.021 0.014 0.019

t-stat 3.09 4.12 3.30 4.24 – 2.76 4.24 3.08

β coef. 0.932 0.936 0.940 0.932 – 0.932 0.932 0.932

std. 0.023 0.015 0.018 0.017 – 0.026 0.017 0.023

t-stat 40.3 62.9 52.4 56.4 – 36.1 56.4 40.2

ν coef. 11.0 11.2 11.3 11.0 – 11.0 11.0 11.0

std. 2.89 3.20 3.21 3.17 – 2.70 3.17 2.89

t-stat 3.80 3.49 3.53 3.45 – 4.06 3.45 3.79

LL -1035.9 -1030.5 -1030.5 -1036.0 – -1035.9 -1035.9 -1035.9

GJR-GARCH

ω coef. 0.003 0.002 0.002 0.003 0.003 0.003 0.003 0.003

std. 0.002 0.001 0.001 0.002 0.002 0.003 0.002 0.002

t-stat 1.33∗ 2.15 1.79∗∗ 1.71∗∗ 1.51∗ 1.26∗ 1.71∗∗ 1.32∗

α coef. 0.036 -0.010b 0.000 0.036 0.036 0.036 0.073 0.037

α∗ coef. 0.036 -0.010 0.000 0.036 0.036 0.036 0.037 0.037

std. 0.016 0.013 0.000 0.017 0.016 0.021 0.017 0.016

t-stat 2.29 -0.09∗ 0.51∗ 2.19 2.27∗∗ 1.72∗∗ 4.33 2.29

β coef. 0.936 0.963 0.960 0.936 0.936 0.936 0.936 0.936

std. 0.023 0.011 0.010 0.016 0.019 0.025 0.016 0.023

t-stat 41.5 88.2 97.7 57.8 48.8 37.5 57.7 41.3

γ coef. 0.038 0.074 0.062 0.038 0.038 0.038 -0.036 0.038

std. 0.022 0.017 0.015 0.020 0.021 0.025 0.020 0.022

t-stat 1.71∗∗ 4.50 4.01 1.91∗∗ 1.83∗∗ 1.50∗ -1.85∗∗ 1.70∗∗

ν coef. 11.3 11.7 11.8 11.3 11.3 11.3 11.2 11.3

std. 2.98 3.50 3.29 3.41 3.19 2.79 3.39 2.97

t-stat 3.80 3.34 3.57 3.30 3.54 4.05 3.31 3.79

LL -1034.1 -1023.2 -1021.9 -1034.1 -1030.7 -1034.1 -1034.3 -1034.2

EGARCH

ω coef. -1.281 -0.078 -0.010 -0.013 -0.003 -0.013 -0.010 –a

ω∗ coef. -0.010 -0.009 -0.010 -0.013 -0.003 -0.013 -0.010 –

std. 0.370 0.023 0.005 0.008 0.008 0.009 0.008 –

t-stat -3.46 -3.38 -2.12 -1.70∗∗ -0.37∗ -1.46∗ -1.34∗ –

β coef. 0.992 0.991 0.992 0.989 0.989 0.989 0.989 –

std. 0.005 0.004 0.004 0.006 0.006 0.008 0.006 –

t-stat 212.6 239.9 254.5 160.3 156.3 127.2 160.2 –

θ2 coef. -0.052 -0.068 -0.062 -0.038 -0.039 -0.038 -0.038 –

std. 0.017 0.016 0.016 0.016 0.018 0.022 0.016 –

t-stat -3.12 -4.24 -3.83 -2.35 -2.20 -1.72∗∗ -2.35 –

θ1 coef. 0.103 0.086 0.086 0.137 0.137 0.137 0.137 –

std. 0.025 0.026 0.021 0.029 0.030 0.039 0.029 –

t-stat 4.13 3.28 4.11 4.80 4.58 3.48 4.80 –

ν coef. 13.2 12.9 12.5 11.9 11.9 11.9 11.8 –

std. 4.06 4.39 3.66 3.75 3.61 3.05 3.74 –

t-stat 3.25 2.95 3.42 3.16 3.29 3.89 3.16 –

LL -1028.7 -1024.6 -1023.6 -1035.4 -1031.9 -1035.4 -1035.4 –

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 11: Default estimation for volatility models with Student distribution on large

sample (1195 observations).
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

TGARCH

ω coef. – 0.005 0.006 – – 0.008 0.007 0.004

std. – 0.003 0.004 – – 0.006 0.004 0.003

t-stat – 2.18 1.55∗ – – 1.37∗ 1.79∗∗ 1.52∗

α coef. – 0.047 0.018 – – 0.085 0.093 0.072

α∗ coef. – 0.010 0.018 – – 0.067 0.053 0.050

std. – 0.014 0.013 – – 0.027 0.018 0.019

t-stat – 3.43 1.39∗ – – 3.14 5.12 3.92

β coef. – 0.954 0.952 – – 0.920 0.932 0.933

std. – 0.013 0.015 – – 0.029 0.015 0.020

t-stat – 72.3 61.8 – – 31.3 60.2 47.8

γ coef. – 0.783 0.061 – – 0.211 -0.040 0.303

γ∗ coef. – 0.074 0.061 – – 0.036 0.040 0.044

std. – 0.320 0.018 – – 0.177 0.017 0.132

t-stat – 2.45 3.43 – – 1.20∗ -2.30 2.29

ν coef. – 13.0 12.9 – – 10.5 11.8 11.9

std. – 4.42 3.80 – – 2.61 3.71 3.34

t-stat – 2.93 3.39 – – 4.01 3.19 3.57

LL — -1025.0 -1025.1 – – -1040.8 -1035.7 -1035.4

APARCH

ω coef. –a 0.003 0.002 – – 0.001 0.003 0.003

std. – 0.019 0.001 – – 0.003 0.002 0.003

t-stat – 1.61∗ 1.55∗ – – 0.25∗ 1.24∗ 1.18∗

α coef. – 0.023 0.014 – – 0.014 0.051 0.055

std. – 2.065 0.011 – – 0.067 0.023 0.035

t-stat – 0.01∗ 1.29∗ – – 0.21∗ 2.21 1.57∗

β coef. – 0.956 0.960 – – 0.954 0.937 0.935

std. – 0.014 0.010 – – 0.034 0.016 0.024

t-stat – 70.6 94.8 – – 27.8 57.7 38.3

γ coef. – 0.999 -0.992 – – 0.171 -0.162 0.182

std. – 105.8 0.051 – – 0.109 0.109 0.158

t-stat – 0.01 -19.5 – – 1.57∗ -1.48∗ 1.15∗

δ coef. – 1.730 2.098 – – 3.500 2.090 1.932

std. – 0.561 0.567 – – 4.555 0.805 1.032

t-stat – 3.08 3.70 – – 0.77∗ 2.60 1.87∗∗

ν coef. – 12.2 11.7 – – 11.0 11.2 11.3

std. – 3.95 3.30 – – 2.92 3.38 3.09

t-stat – 3.09 3.53 – – 3.78 3.31 3.67

LL – -1023.4 -1021.9 – – -1030.8 -1034.4 -1034.1

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied.
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Table 12: Estimation for volatility models with Normal distribution on large sample

(1195 observations) from BFGS algorithm and Hessian-based estimator.
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

GARCH

ω coef. 0.005 0.005 0.005 – 0.005 0.005 0.005 0.005

std. 0.002 0.002 0.002 – 0.002 0.002 0.002 0.002

t-stat 1.99 1.98 2.01 – 1.99 2.12 1.98 1.98

α coef. 0.071 0.071 0.072 – 0.071 0.072 0.071 0.071

std. 0.016 0.016 0.016 – 0.016 0.016 0.016 0.016

t-stat 4.37 4.36 4.37 – 4.37 4.50 4.36 4.36

β coef. 0.917 0.917 0.917 – 0.917 0.917 0.917 0.917

std. 0.020 0.020 0.020 – 0.020 0.019 0.020 0.020

t-stat 46.5 46.5 46.5 – 46.6 48.2 46.5 46.5

LL -1045.0 -1045.0 -1045.1 – -1041.5 -1045.2 -1045.0 -1045.0

GJR-GARCH

ω coef. 0.005 0.005 0.004 – 0.005 –a 0.005 0.005

std. 0.002 0.002 0.002 – 0.002 – 0.002 0.002

t-stat 1.95∗∗ 1.94∗∗ 1.89∗∗ – 1.96 – 1.94∗∗ 1.94∗∗

α coef. 0.046 0.047 0.043 – 0.046 – 0.088 0.046

α∗ coef. 0.046 0.047 0.043 – 0.046 – 0.047 0.046

std. 0.016 0.016 0.016 – 0.016 – 0.021 0.016

t-stat 2.82 2.87 2.62 – 2.83 – 4.10 2.83

β coef. 0.921 0.921 0.925 – 0.921 – 0.921 0.921

std. 0.020 0.020 0.020 – 0.020 – 0.020 0.020

t-stat 46.6 46.6 47.4 – 47.0 – 46.5 46.5

γ coef. 0.043 0.041 0.042 – 0.043 – -0.041 0.043

std. 0.020 0.020 0.020 – 0.020 – 0.020 0.020

t-stat 2.12 2.04 2.15 – 2.12 – -2.03 2.10

LL -1042.7 -1042.9 -10341.4 – -1039.1 – -1042.9 -1042.7

EGARCH

ω coef. -0.939 -0.135 -0.013 – -0.013 -0.014 -0.012 -0.135

ω∗ coef. -0.009 -0.012 -0.013 – -0.013 -0.014 -0.012 -0.012

std. 0.275 0.027 0.007 – 0.008 0.008 0.008 0.027

t-stat -3.42 -5.11 -1.72∗∗ – -1.66∗∗ -1.77∗∗ -1.64∗∗ -5.11

β coef. 0.990 0.987 0.987 – 0.986 0.986 0.986 0.986

std. 0.005 0.006 0.006 – 0.006 0.006 0.006 0.006

t-stat 203.4 155.1 160.8 – 155.7 153.2 155.0 154.5

θ2 coef. -0.056 -0.042 -0.038 – -0.042 -0.037 -0.042 -0.042

std. 0.015 0.016 0.015 – 0.016 0.025 0.016 0.016

t-stat -3.84 -2.66 -2.53 – -2.67 -1.49∗ -2.65 -2.66

θ1 coef. 0.115 0.154 0.146 – 0.154 0.154 0.154 0.154

std. 0.026 0.029 0.028 – 0.028 0.039 0.029 0.029

t-stat 4.50 5.39 5.26 – 5.42 3.96 5.39 5.39

LL -1034.8 -1043.1 -1043.3 – -1039.5 -1043.7 -1043.1 -1043.1

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied. c means failure to improve likelihood

(non-zero gradients).
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Table 13: Estimation for volatility models with Normal distribution on large sample

(1195 observations) from BFGS algorithm and Hessian-based estimator.
Packages

Parameters Ox-G@RCH Eviews Matlab-MFE Matlab-Ek Gauss-Fanpac R-rugarch Stata Gretl

TGARCH

ω coef. – 0.008 0.013 – – –a 0.008 0.005

std. – 0.004 0.006 – – – 0.004 0.003

t-stat – 2.04 2.20 – – – 2.03 2.05

α coef. – 0.082 0.076 – – – 0.105 0.082

α∗ coef. – 0.058 0.076 – – – 0.060 0.057

std. – 0.016 0.017 – – – 0.020 0.016

t-stat – 5.19 4.50 – – – 5.22 5.19

β coef. – 0.923 0.903 – – – 0.923 0.923

std. – 0.017 0.021 – – – 0.017 0.017

t-stat – 55.9 44.0 – – – 55.5 55.7

γ coef. – 0.298 0.040 – – – -0.045 0.303

γ∗ coef. – 0.049 0.040 – – – 0.045 0.050

std. – 0.103 0.019 – – – 0.017 0.107

t-stat – 2.88 2.11 – – – -2.61 2.83

LL – -1043.3 -1050.4 – – – -1043.5 -1042.9

APARCH

ω coef. –a 0.006 – – – 0.002 0.006 0.005

std. – 0.003 – – – 0.001 0.003 0.003

t-stat – 1.68∗∗ – – – 3.14 1.65∗∗ 1.96

α coef. – 0.075 – – – 0.022 0.074 0.077

std. – 0.020 – – – 0.010 0.020 0.019

t-stat – 3.77 – – – 2.23 3.65 4.03

β coef. – 0.922 – – – 0.935 0.922 0.922

std. – 0.019 – – – 0.016 0.019 0.018

t-stat – 49.5 – – – 57.5 49.4 50.3

γ coef. – 0.209 – – – 0.134 -0.193 0.223

std. – 0.113 – – – 0.081 0.107 0.118

t-stat – 1.85∗∗ – – – 1.66∗∗ -1.81∗∗ 1.90∗∗

δ coef. – 1.580 – – – 3.485 1.613 1.476

std. – 0.542 – – – 0.593 0.561 0.516

t-stat – 2.91 – – – 5.88 2.87 2.86

LL – -1030.8 – – – -1041.0 -1042.8 -1042.3

Notes: ω∗ denotes the intercept term modified for comparison. ∗ and ∗∗ mean significant at the 5% and 10% level, respectively. a

means no convergence. b means that the positivity or stationarity constraint is not satisfied. c means failure to improve likelihood

(non-zero gradients).
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Table 14: Out-of-sample results of GARCH-type models with a Normal distribution.

Packages

Models Ox-G@RCH Eviews Matlab-MFE Gauss-Fanpac R-rugarch Stata MatlabEk Gretl

Panel A: Normal

GARCH MSE 0.3969 0.4053 0.4001 0.3958 0.3957 0.3968 0.3946 0.3957

MCS-MSE 0.6567∗∗ 0.6567∗∗ 0.6567∗∗ 0.6567∗∗ 0.6567∗∗ 0.6567∗∗ 1.000∗∗ 0.6567∗∗

QLIKE 0.2243 0.2407 0.2342 0.2216 0.2214 0.2240 0.2195 0.2212

MCS-QLIKE 0.0676 0.0496 0.0380 0.0676 0.0676 0.0676 1.000∗∗ 0.0676

GJR MSE – – – 0.3833 – 0.3900 0.3839 –

MCS-MSE – – – 1.000∗∗ – 0.4209∗ 0.4209∗

QLIKE – – – 0.2108 – 0.2161 0.2107 –

MCS-QLIKE – – – 0.7555∗∗ – 0.0995 1.000∗∗ –

EGARCH MSE 0.4012 0.4125 0.3904 0.3812 0.3813 0.3903 0.3822 –

MCS-MSE 0.4300∗ 0.4229∗ 0.4300∗ 1.000∗∗ 0.4300∗ 0.4300∗ 0.4300∗ –

QLIKE 0.2336 0.2477 0.2284 0.2130 0.2132 0.2200 0.2139 –

MCS-QLIKE 0.0583 0.0508 0.0583 1.000∗∗ 0.1826 0.0583 0.1826 –

TGARCH MSE – 0.4130 0.4160 – – 0.3957 – 0.3852
MCS-MSE – 0.3010∗ 0.1601 – – 0.3597∗ – 1.000∗∗

QLIKE – 0.2506 0.2727 – – 0.2246 – 0.2180
MCS-QLIKE – 0.0509 0.0048 – – 0.1073 – 1.000∗∗

Notes: MCS-MSE and MCS-MAD denote the p-value of the statistic TmaxM of Hansen et al. (2011) based on the MSE and

QLIKE loss functions respectively. ∗ and ∗∗ mean that the forecasts are in M̂ ∗
20% and M̂ ∗

50%, respectively. The lowest MSE and

QLIKE values appear in bold.

Table 15: Out-of-sample results of GARCH-type models with a Student distribution.

Packages

Models Ox-G@RCH Eviews Matlab-MFE Gauss-Fanpac R-rugarch Stata MatlabEk Gretl

GARCH MSE 0.4022 0.4143 0.4070 0.4016 0.4004 0.4021 0.3996 0.4004

MCS-MSE 0.7266∗∗ 0.6445∗∗ 0.6445∗∗ 0.7195∗∗ 0.7266∗∗ 0.7266∗∗ 1.000∗∗ 0.7266∗∗

QLIKE 0.2324 0.2549 0.2457 0.2286 0.2282 0.2321 0.2270 0.2280

MCS-QLIKE 0.1801 0.0730 0.0479 0.1801 0.1801 0.1801 1.000∗∗ 0.1801

GJR MSE 0.3943 – – 0.3875 – 0.3949 0.3879 0.3877

MCS-MSE 0.4697∗ – – 1.000∗∗ – 0.4697∗ 0.4697∗ 0.4697∗

QLIKE 0.2222 – – 0.2162 – 0.2228 0.2163 0.2159
MCS-QLIKE 0.1158 – – 0.2416∗ – 0.1158 0.3754∗ 1.000∗∗

EGARCH MSE 0.4074 0.4239 0.3961 0.3860 0.3861 – 0.3863 –

MCS-MSE 0.3530∗ 0.3091∗ 0.3751∗ 1.000∗∗ 0.3751∗ – 0.3751∗ –

QLIKE 0.2424 0.2660 0.2370 0.2171 0.2171 – 0.2177 –

MCS-QLIKE 0.0307 0.0224 0.0307 1.000∗∗ 0.3998∗ – 0.1891 –

TGARCH MSE – 0.4226 – – – 0.3985 – 0.3898
MCS-MSE – 0.0748 – – – 0.4091∗ – 1.000∗∗

QLIKE – 0.2660 – – – 0.2299 – 0.2218
MCS-QLIKE – 0.0246 – – – 0.0920 – 1.000∗∗

Notes: MCS-MSE and MCS-MAD denote the p-value of the statistic TmaxM of Hansen et al. (2011) based on the MSE and

QLIKE loss functions respectively. ∗ and ∗∗ mean that the forecasts are in M̂ ∗
20% and M̂ ∗

50%, respectively. The lowest MSE and

QLIKE values appear in bold.
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Table 16: Out-of-sample results of GARCH-type models with BFGS algorithm.

Packages

Models Ox-G@RCH Eviews Matlab-MFE Gauss-Fanpac R-rugarch Stata MatlabEk Gretl

GARCH MSE 0.3969 0.3968 0.4001 0.3958 – 0.3969 – 0.3957
MCS-MSE 0.8840∗∗ 0.8840∗∗ 0.8740∗∗ 0.8840∗∗ – 0.8840∗∗ – 1.000∗∗

QLIKE 0.2249 0.2238 0.2342 0.2216 – 0.2240 – 0.2212
MCS-QLIKE 0.3254∗ 0.3375∗ 0.1076 0.3375∗ 0.3375∗ 1.000∗∗

GJR MSE 0.3895 0.3900 0.3832 0.3833 0.3833 0.3900 – 0.3834

MCS-MSE 0.8404∗∗ 0.7516∗∗ 1.000∗∗ 0.9931∗∗ 0.9931∗∗ 0.7011∗∗ – 0.9924∗∗

QLIKE 0.2161 0.2159 0.2106 0.2108 0.2108 0.2161 – 0.2106
MCS-QLIKE 0.1355 0.1355 0.1355 0.1355 0.1355 0.1355 – 1.000∗∗

EGARCH MSE 0.4013 0.3902 0.3837 0.3812 – 0.3903 – –

MCS-MSE 0.3593∗ 0.3593∗ 0.3593∗ 1.000∗∗ – 0.3593∗ – –

QLIKE 0.2337 0.2197 0.2152 0.2130 – 0.2200 – –

MCS-QLIKE 0.1997 0.3297∗ 0.5920∗∗ 1.000∗∗ – 0.3297∗ – –

TGARCH MSE – 0.3931 0.3885 – – 0.3942 – 0.3852
MCS-MSE – 0.5739∗∗ 0.5739∗∗ – – 0.5030∗∗ – 1.000∗∗

QLIKE – 0.2229 0.2201 – – 0.2246 – 0.2180
MCS-QLIKE – 0.3468∗ 0.5617∗∗ – – 0.2419 – 1.000∗∗

Notes: MCS-MSE and MCS-MAD denote the p-value of the statistic TmaxM of Hansen et al. (2011) based on the MSE and

QLIKE loss functions respectively. ∗ and ∗∗ mean that the forecasts are in M̂ ∗
20% and M̂ ∗

50%, respectively. The lowest MSE and

QLIKE values appear in bold.
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