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Volatility estimation for Bitcoin: 
Replication and robustness

Olivier Darné, LEMNA
Amélie Charles, Audencia Business School

Abstract

Katsiampa [Volatility estimation for Bitcoin: A comparison of GARCH mod-els. 
Economics Letters, 158, 3-6, 2017] compares several GARCH-type models

to estimate volatility for Bitcoin returns. First, we propose a replication study (i) by 
verification, using the same sample and period (July 2010 to October 2016), and (ii) by 
reproduction, extending the sample until March 2018. We obtain only partially different 
results from those of Kasiampa (2017) on both samples. Sec-ond, we propose a 
robustness analysis (i) by reanalysis, using the robust QML estimator for computing the 
standard errors of the parameters, and (ii) by exten-sion, taking into account the presence 
of jumps in the Bitcoin returns. The results show that the six GARCH-type models 
studied, namely GARCH-type models characterized by short memory, asymmetric 
effects, or long-run and short-run movements, seem not to be appropriate for modelling 
the Bitcoin returns.

Keywords: Bitcoin, GARCH, volatility, jumps.

JEL Classification: C22, C50, G10.
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1 Introduction

Reproducibility, replicability and robustness are fundamental characteristics of scien-

tific studies. Replication, reproduction and robustness studies stimulate scientific rigor

and enhance the validity and reliability of published research. Burman et al. (2010)

emphasize that replication is a critical tool for scientific progress and that the absence

of such studies “is particularly problematic because empirical economic research is

often prone to error”.1 However, there is no consensus on definitions for the concepts

of reproducibility, replicability and robustness (see, e.g., Arulampalam et al., 1997;

Pesaran, 2003; Hamermesh, 2007; Clemens, 2017), which can lead to confusion. In

order to avoid confusion on these concepts Clemens (2017) identifies four categories

that we present briefly in Figure 1:2

Replication

Robustness

parameters drawn from the 

same sampling distribution as 

those in the original study

parameters drawn from the 

different sampling distribution 

from those in the original study

Replication by 

verification

Replication by 

reproduction

Robustness by 

reanalysis

Robustness by 

extension

using the same model specification, test, 

and sample

using the same model specification, test, 

but a different sample

same data set and estimating different 

parameters

new data gathered on a sample 

representative of a different population, 

or gathered on the same sample at a 

substantially different time, or both

1Burman et al. (2010) emphasize that the errors can arise from inadvertent and innocent mistakes by

researchers or from bugs in computer programs but also from carelessness or even dishonesty. Further,

McCullough and Vinod (2003) emphasize that “Research that cannot be replicated is not science, and

cannot be trusted either as part of the profession’s accumulated body of knowledge or as a basis for

policy.”
2We thank an anonymous referee for the importance to distinguish between reproducibility,

replicability and robustness.
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These issues are of increasing importance for the scientific literature as shown by

the computational infrastructures (e.g., runmycode.org, Hurlin et al, 2012, codeo-

cean.com), the websites providing information on replication studies (e.g., Replication

in Economics or Replication Network), the special sections proposed by some journals

(e.g., “Replication section” in Journal of Applied Econometrics or “Data, Tools, and

Replication” in International Economics, the special issue on replication in Energy

Economics), the replication policy to make data and code available by some journals

on their website (e.g., The American Economic Review, Econometrica, Review of Eco-

nomic Studies, Journal of Applied Econometrics, etc.)3

Cryptocurrencies, such as Bitcoin, are a new breed of digital currency systems

built on computer cryptology and decentralized (peer-to-peer) network architecture.

Bitcoin, the most popular virtual (digital) currency and cryptocurrency (Nakamoto,

2008), is an open source virtual currency, as it is managed by an open source software

algorithm that uses the global internet network both to create Bitcoins as well as

to record and verify its transactions.4 While central authorities and central banks

guarantee or have control over standard (fiat) currencies, Bitcoin is fully decentralized

and depends on a sophisticated protocol that uses only cryptography to control

transactions, manage its supply, and prevent harmful actions that may endanger the

system. All transactions are stored digitally and recorded in a shared ledger data

technology known as blockchain (see, e.g., Dwyer, 2015; Böhme et al., 2015).5

Since its inception in January 2009, Bitcoin exhibits an extreme increase of its market

3Note that very few journals publish replications. Duvendack et al. (2017) inventory only 28 of 333

economics journals which regularly make data and code available.
4The success of Bitcoin has led to the emergence of many alternative virtual currencies, called

altcoins (abbreviation of “Bitcoin alternative”), such as BitShares, Ethereum, Dash, DogeCoin,

LiteCoin, PeerCoin, Ripple. Most of altcoins rely on the same or similar blockchain technology as

Bitcoin, and aim to either complement or improve certain BitCoin characteristics. See Ciaian et al.

(2018) for a discussion on altcoins.
5Bitcoins are created in a mining process, in which computer network participants, called miners, i.e.

users who provide their computing power, verify, validate transactions (by gathering together blocks)

and record payments into a public ledger called blockchain. This work is remunerated by giving the

miners (new) Bitcoins, what makes the validating costs cheaper than in a centralized system. Note that

mining is the only way that new Bitcoins are introduced. The validation is made by solving some kind

of algorithm. See Lee (2015) et Narayanan et al. (2016).
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value, with a market capitalization exceeding $139 billion and representing more than

60% of the total cryptocurrency capitalization, and an estimated circulation to be

almost 17 million in April 2018 (CoinDesk and CoinMarketCap).6 Bitcoin prices

are characterized by high volatility: at the end of 2010 Bitcoin prices rose from $1

to nearly $30 in June 2011, before falling below $2 at the end of 2011. Since 2012

Bitcoin prices rose until nearly $20,000 in December 2017, then falling below $7,000

in February 2018 (see Figure 1).

Therefore, financial-market participants would benefit from a better understanding

of Bitcoin volatility over time. In this framework, Katsiampa (2017) in “Volatility

estimation for Bitcoin: A comparison of GARCH models” [Economics Letters, 158,

3-6, 2017] compares six GARCH-type (GARCH, EGARCH, TGARCH, APARCH,

CGARCH and ACGARCH) models to estimate volatility for Bitcoin returns, covering

the period from July 18, 2010 to October 01, 2016, and find that “ the best model is

the AR-CGARCH model”. We propose a replication study by verification on the same

sample, period and GARCH-type models. Our results are partially different from those

of Kasiampa (2017) in terms of values of the GARCH coefficients and t-ratios, and the

differences are mainly coming from the method used to compute the return series. We

also propose a replication study by reproduction, using a different sample extended

until March 2018, and find similar results to those for the shorter period.

We revisit the Katsiampa’s (2017) results through a robustness test by reanalysis that

allows for changes in empirical specifications and/or estimation methods (Arulam-

palam et al., 1997; Clemens, 2017). For that we use a more appropriate estimator with

the robust QML estimator (Bollerslev and Wooldridge, 1992) which is robust to con-

ditional non-Normality to produce standard errors of the estimated parameters. The

results of the reanalysis show that all the GARCH-type models are rejected for the

both samples.

It is well-known that financial returns are subject to a number of drastic shocks

(called large shocks, outliers or jumps), and the Bitcoin returns do not make discordant

note neither (see Figures 1 and 2). For instance, on June 11, 2011, the Bitcoin recorded

a negative returns of 49% because of the hacking of Mt.Gox exchange platform. These

6The information is available at: www.coindesk.com (CoinDesk) and https://coinmarketcap.com

(CoinMarketCap).
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shocks may pose difficulties for the identification and estimation of GARCH models

governing the conditional volatility of returns (e.g., Carnero et al., 2001, 2007; Charles

and Darné, 2006; Laurent et al., 2016). We thus extend the study of Katsiampa (2017)

to a robustness level by detecting first the jumps in the Bitcoin returns via the semi-

parametric test for jumps in GARCH models proposed by Laurent et al. (2016).7, and

estimating then GARCH-type models on filtered data. We find that the Bitcoin re-

turns are strongly characterized by the presence of jumps mainly due to attacks, hacks,

thefts, closings or bankruptcies of Bitcoin exchange platforms as well as technical is-

sues. The results on the filtered returns show that the six GARCH-type models studied

seem not to be appropriate for modelling the Bitcoin returns.

The remainder of this article is organized as follows. Section 2 presents the

replication of the Katsiampa’s (2017) study (by verification and reproduction) whereas

the robustness tests (by reanalysis and extension) are presented in Section 3. Finally,

Section 4 concludes.

2 Replication study

In this section we follow Katsiampa (2017) and consider the returns series rt , described

by a Normal AR(1)-GARCH(1,1) model:

rt = µt + εt , µt = c+
∞

∑
i=1

ξiεt−i, (1)

εt = σtzt , zt ∼ i.i.d.N(0,1), (2)

σ
2
t = ω+αε

2
t−1 +βσ

2
t−1, (3)

where εt is the error term, zt is a white noise process, σt is the conditional standard

deviation, and ξi are the coefficients of ξ(L) = φ−1(L) = 1+∑
∞
i=1 ξiLi, with L the lag

operator and φ(L) the AR polynomial of order 1.

For the conditional variance σ2
t we consider six different GARCH-type models,

namely GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), GJR-GARCH (Glosten

7In his definition of ‘new data’ for robustness test by extension Clemens (2017) includes “dropping

influential observations, since a truncated sample cannot represent the same population” (p. 327).
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et al., 1993)8, Asymmetric Power ARCH (APARCH, Ding et al., 1993), Component

GARCH and Asymmetric Component GARCH (CGARCH and ACGARCH, respec-

tively, Engle and Lee, 1993) models. A brief presentation of the models is given in

Table 2.9

2.1 Replication by verification

We use the same data and sample period as in Katsiampa (2017), covering July 18,

2010 to October 01, 2016 (2 268 observations).10 The Bitcoin returns are calculated as

the first differences of the logarithmic prices, defined by rt = logPt − logPt−1, where

Pt is the observed price at time t. The graphical representations of prices, returns and

volatility are in Figure 1.

The replication of the summary statistics for Bitcoin returns are presented in Ta-

ble 1 (Panel A). However, the values are not equal to Katsiampa (2017), whatever

the descriptive statistics. We then compute the descriptive statistics on the Bitcoin

returns calculated as arithmetic returns defined by rg
t = (Pt −Pt−1)/Pt−1 and find ex-

actly the same values to those displayed in Katsiampa (2017). Even if the different

approaches to calculate the returns do not change the main characteristics of Bitcoin

8Note that Katsiampa (2017) estimates a TARCH model whereas we estimate a GJR-GARCH

model. However, the estimated parameters are the same because EViews proposes the estimation of

a TARCH model but its TARCH model is estimated on σ2
t and not on σt as defined in Rabemananjara

and Zakoian (1993). Its TARCH specification is rather similar to the GJR-GARCH model of Glosten et

al. (1993).
9The parameters of the volatility models are estimated by the quasi-maximum likelihood (QML)

method and the quasi-likelihood function is maximized using the quasi-Newton method of Broyden,

Fletcher, Goldfarb and Shanno (BFGS) with the Marquardt correction, namely the same code and

software as in Katsiampa (2017). In a previous version of the study we have used the Berndt-Hall-

Hall-Hausman (BHHH) algorithm with the Marquardt correction, from the default option of EViews

7.0. Katsiampa (2017) did not give information about the software package used in estimation, what the

default estimation methods are, such as method to optimize the likelihood function or how the standard

errors are computed. We have tried different software packages and only EViews produced similar

results to those obtained in Katsiampa (2017). However, in an author’s reply to this previous study

she mentions that the BFGS optimization method with Marquardt step method was employed, and the

standard errors were computed from the outer product of the gradient (OPG) estimator, from the default

option of EViews 9.0.
10Bitcoin price data is downloaded from coindesk.com.
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returns, namely highly non-Normal, evidence of significant excess skewness and kur-

tosis, and strong conditional heteroscedasticity, except for excess skewness which is

with the opposed sign, these differences could have implications in the estimation of

GARCH-type models.

Table 3 shows the estimation results of the GARCH-type models, computed using

arithmetic (Panel A) and logarithmic returns (Panel B). The comparison between the

volatility models is effected via various in-sample criteria: Log-Likehood (LL), Akaike

(AIC) and Hannan-Quinn (HQ). Each time, the best model appears in bold showing

the highest value of LL and the lowest values of AIC and HQ. The residual tests are

also shown to see whether the chosen volatility model is the most appropriate.

When estimating GARCH-type models on returns computed as arithmetic returns

we find exactly the same values for GARCH parameters, t-ratios, in-sample criteria

and residual tests as in Katsiampa (2017), whatever the GARCH-type models, except

for the ACGARCH models where the estimations are slightly different. Nevertheless,

we also find that the Bitcoin volatility is best modelled by the AR(1)-CGARCH model.

When estimating GARCH-type models on returns computed as logarithmic returns

we find similar values of GARCH coefficients and t-ratios for all the GARCH-type

models. The AR(1)-CGARCH model stays the best specification for the Bitcoin

returns. Overall, our results are only partially different from those of Kasiampa (2017)

due to the difference in computing the returns.

2.2 Replication by reproduction

We now propose a replication by reproduction of the Katsiampa’s (2017) study by

estimating the GARCH-type models on a longer period, namely until March 22,

2018, producing 2,803 observations (see Figure 2). For this analysis we use Bitcoin

logarithmic returns, rt .

Table 1 (Panel B) presents the summary statistics and shows the same main

characteristics as those for the shorter period, namely highly non-Normal, evidence

of significant excess skewness and kurtosis, and strong conditional heteroscedasticity.

After the estimation of the models, the AR(1)-CGARCH model seems to be again

the best specification (Table 5).
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3 Robustness analysis

In this section we first reanalyze the study of Katsiampa (2017) by computing robust

standard errors of the parameters in the GARCH-type models, and second we extend

her study by taking into account the presence of jumps, which can be classified as

robustness tests.

3.1 Robustness by reanalysis

Since the Bitcoin returns are characterized by non-Normality we apply a more

appropriate estimator for computing standard errors rather than the outer product of

the gradient (OPG) estimator. For that, the so-called QML “sandwich” estimator

(also known as robust covariance matrix estimator or heteroscedasticity-consistent

covariance matrix estimator) proposed by Bollerslev and Wooldridge (1992) is used

to compute robust standard errors of the parameters in the GARCH-type models.

The covariance matrix is estimated using both matrices of second order derivatives

(the Hessian matrix, H(.)) and outer products of first derivatives (or OPG, B(.)) of the

log-likelihood function:

Q(θ̂) = H(θ̂QML)
−1B(θ̂QML)H(θ̂QML)

−1,

where θ̂QML is the robust QML estimator of θ, and the coefficient standard errors as

the (robust) Bollerslev-Wooldridge standard errors.11

The results are displayed in brackets in Table 3 and show that the asymmetric

parameters are become not statistically significant for all the asymmetric models. This

finding is not consistent with the presence of asymmetry detected from asymmetric

volatility models by Katsiampa (2017), Bouri et al. (2017) and Baur et al. (2018).12

The GARCH model is the only volatility model for which all the parameters are

11Katsiampa (2017) uses the OPG estimator for computing standard errors, given by I(θ̂) ≈
E
[
B(θ̂)

]
= E

[
∑

T
t=1 Gt(θ̂)G′t(θ̂)

]
= E

[
∂lnL
∂θ

∂lnL
∂θ′

]
, with G(.) the gradient matrix.

12Bouri et al. (2017) fit GRJ-GARCH(1,1) and EGARCH(1,1) models from August 18, 2011 to April

29, 2016, and Baur et al. (2018) estimate a GJR-GARCH(1,1) model from July 19, 2010 to July 14,

2017. Note that Baur et al. (2018) use Bitcoin prices from CoinDesk whereas Bouri et al. (2017) use

data from Bitstamp.
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statistically significant, however its stationarity and fourth-moment conditions are not

satisfied.

In Table 5 we estimate the GARCH-type models on the longer period (2010-2018) and

the robust QML t-statistics are given in brackets. The results confirm those obtained

for the shorter period.

3.2 Robustness by extension

We apply the semi-parametric procedure to detect jumps proposed by Laurent et al.

(LLP) (2016). Their test is similar to the non-parametric tests for jumps in Lee and

Mykland (2008) and Andersen, Bollerslev, and Dobrev (2007) for daily data.

The returns rt are described by the AR(1)-GARCH(1,1) model of equations (1)-(3).

Consider the return series with an independent jump component atIt , defined as:

r∗t = rt +atIt , (4)

where r∗t denotes the observed returns, It is a dummy variable for a jump on day t, and

at is the jump size. In equation (4) a jump atIt will not affect σ2
t+1 (the conditional

variance of rt+1), so that we can have non-Gaussian fat-tailed conditional distributions

of r∗t .

The bounded innovation propagation (BIP)-AR(1) proposed by Muler, Peña and Yohai

(2009) and the BIP-GARCH(1,1) of Muler and Yohai (2008) is used to obtain robust

estimates of µt and σ2
t respectively in equations (1) and (3). These are denoted by µ̃t

and σ̃t and are robust to potential jumps atIt (i.e. they are estimated on r∗t and not on

rt). The BIP-AR(1) and BIP-GARCH(1,1) are defined as:

µ̃t = µ+
∞

∑
i=1

ξiσ̃t−iω
MPY
kδ

(J̃t−i), (5)

σ̃
2
t = ω+α1σ̃

2
t−1cδω

MPY
kδ

(
J̃t−1

)2
+β1σ̃

2
t−1, (6)

where ξi are the coefficients from the AR(1) polynomial defined in equation (1),

ωMPY
kδ

(.) is the weight function, and cδ a factor ensuring that the conditional

expectation of the weighted square of unexpected shocks equals the conditional

variance of rt in the absence of jumps (Boudt et al., 2013).

Consider the standardized return on day t given by:

J̃t =
r∗t − µ̃t

σ̃t
. (7)
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LLP detect the presence of jumps by testing the null hypothesis H0 : atIt = 0 against

the alternative H1 : atIt 6= 0. The null is rejected if

max
T
|J̃t |> gT,λ, t = 1, . . . ,T, (8)

where gT,λ is the suitable critical value.13 If H0 is rejected a dummy variable is defined

as follows:

Ĩt = I
(
|J̃t |> k

)
, (9)

where I(.) is the indicator function, with Ĩt = 1 when a jump is detected at time t. The

filtered returns r̃t are obtained as follows:

r̃t = r∗t − (r∗t − µ̃t)Ĩt . (10)

Laurent et al. (2016) extend this test for additive jumps in AR-GARCH models,

called BIP-AR-BIP-GARCH models, to AR-GJR-GARCH models, called BIP-AR-

BIP-GJR models, to account for asymmetric effects.

In Table 4, detected jumps are given with their timing and t-statistics as well as

the percent changes. A number of jumps is found in the daily Bitcoin returns during

the whole period, giving strong proof of infrequent large shocks. This finding shows

the importance to take into account these large shocks in modelling the volatility

of Bitcoin returns. We also try to associate the date of each jumps with a specific

event that occurred near that date, presenting the jump dates in chronological order.

Overall, most of jumps seem to be associated with attacks, hacks, thefts, closings or

bankruptcies of Bitcoin exchange platforms and Bitcoin services, such as the hacking

of the Japanese-based Mt.Gox exchange (-49%) on June 11, 2011.14

We just give few detailed explanations on jumps associated with “technical” issues

of Bitcoin due to its specific functioning. Bitcoin Core is the reference implementa-

tion of Bitcoin. Initially, the software was published by Satoshi Nakamoto under the

name “Bitcoin”, then “Bitcoin-Qt” and later renamed to “Bitcoin Core” to distinguish

13The critical values are defined by gT,λ = − log(− log(1−λ))bT + cT , with bT = 1/
√

2logT , and

cT = (2logT )1/2− [logπ+ log(logT )]/[2(2logT )1/2]. Laurent et al. (2016) suggest setting λ = 0.5.
14Note that the year 2010 is characterized by a lot of zero returns.

10



it from the network. On 19 March, 2012, a bug on Bitcoin-Qt implies a fall of Bit-

coin (-11.9%). On 18 August, 2015, Bitcoin Core developers Mike Hearn and Gavin

Andresen release a separate version of the Bitcoin client software, called Bitcoin XT.

Bitcoin XT implements BIP 10115, which proposes replacing the fixed one megabyte

maximum block size with a maximum size that grows over time at a predictable rate.

The release of Bitcoin XT culminated fears that the Bitcoin community may not be

able to reach a consensus on the issue, and the blockchain may hard fork, resulting in

two separate versions of Bitcoin’s global ledger (-16%). On July 20, 2017, the Bitcoin

averted a split into two currencies after its network (miners) supported an upgrade to

its software, the so-called BIP 91 through a software called SegWit2x (Segregated Wit-

ness), that would enhance its ability to process an increasing number of transactions

(22.6%). The announcement of the first version of the Lightning Network protocol

on January 16, 2018 can explain the fall of Bitcoin (-18%). This payment protocol is

touted as a solution to the Bitcoin scalability problem. It could enable (almost) instant

transactions between participating, including micro-transactions, for a very low price.

Table 1 (Panel B) presents the summary statistics for the filtered returns and show

that the jump-filtered returns (r̃t) also exhibit excess skewness, excess kurtosis and

conditional heteroscedasticity, although the excess kurtosis and skewness decrease

dramatically. Note that the original returns exhibit negative excess skewness while

the filtered returns display positive excess skewness, signifying that the series have a

longer right tail (extreme gains) than left tail (extreme losses).

The estimation results of the GARCH-type models on the filtered returns (Panel

B, Table 5) show that the better specification for the Bitcoin returns is the GARCH

model, as this is the only volatility model for which all the parameters are statistically

significant. The value of α decreases and the value of β increases when the data

are cleaned of jumps. This finding is in line with those of Carnero et al. (2001,

2007), showing that this behavior on volatility parameters can be due to jumps. The

stationarity condition is satisfied but the existence of the fourth moment is not satisfied.

Finally, our results suggest that asymmetric and component GARCH models are not

appropriate for modelling the Bitcoin returns as well as the standard GARCH model.

15A Bitcoin Improvement Proposal (BIP) is a design document for introducing features or information

to Bitcoin. This is the standard way of communicating ideas since Bitcoin has no formal structure.
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4 Conclusion

This paper proposed a replication in two ways of the Katsiampa’s (2017) study on

volatility estimation for Bitcoin returns based on six GARCH-type models, where the

best specification is the AR-CGARCH model. We first replicated by verification on the

same sample and period (2010-2016), and second by reproduction on a longer period

(2010-2018). Our results are only partially different from those of Kasiampa (2017) in

terms of values of GARCH coefficients and t-ratios due to the difference in computing

the returns. We then proposed robustness tests in two ways. We first reanalyzed her

study by using robust QML estimator which is robust to conditional non-Normality to

produce standard errors of the estimated parameters. We found that all the GARCH-

type models are rejected because either the parameters are not statistically significant

or the stationarity condition is not satisfied. Second, we extended the study by

detecting jumps in volatility and analyzing their effect on volatility modelling on the

Bitcoin returns. We found that the Bitcoin returns are strongly characterized by the

presence of jumps. The results on the filtered returns show that the six GARCH-

type models studied, namely GARCH-type models characterized by short memory,

asymmetric effects, or long-run and short-run movements, are not appropriate for

modelling the Bitcoin returns. Therefore, it would be interesting to extend this work

to long-memory and Markow-switching multifractal models.

Finally, as emphasized by Koenker and Zeileis (2009) it is important that software

users should mention the name (and version) of the package used in estimation, what

the default estimation methods are, such as method to optimize the likelihood function,

how the standard errors are computed, and so on, and (if possible) the availability of

data in order to facilitate the reproduction, replication and robustness studies and thus

giving confidence in the research findings.
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Figure 1: Bitcoin prices, returns and squared returns - July 2010 to October 2016.
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Table 2: GARCH(1,1)-type models.

Constraints

Models Equations positivity stationarity

GARCH σ2
t = ω+αε2

t−1 +βσ2
t−1 ω > 0, α≥ 0, α+β < 1

β≥ 0

GJR-GARCH σ2
t = ω+(α+ γ It−1) ε2

t−1 +β σ2
t−1 ω > 0, α,γ,β≥ 0 α+β+(γ/2)< 1

α+ γ≥ 0

EGARCH ln(σ2
t ) = ω+g(zt−1)+β ln(σ2

t−1) |β|< 1

g(zt) = θ1 (|zt |−E(|zt |))+θ2zt

APARCH σδ
t = ω+α(|εt−1|− γεt−1)

δ +βσδ
t−1 ω > 0, α≥ 0,

β≥ 0, −1 < γ < 1

CGARCH σ2
t = qt +α(ε2

t−1−qt−1)+β(σ2
t−1−qt−1) α,β,θ≥ 0 0 < α+β < ρ≤ 1

qt = ω+ρ(qt−1−ω)+θ(ε2
t−1−σ2

t−1) ω > 0 θ < β < 1

ACGARCH σ2
t = qt +α(ε2

t−1−qt−1)+β(σ2
t−1−qt−1) 0≤ α < ρ, ω > 0, 0≤ θ < β 0≤ ρ < 1

+γ(ε2
t−1−qt−1) It−1 0≤ β < (ρ−α)

qt = ω+ρqt−1 +θ(ε2
t−1−σ2

t−1) 0≤ γ < (ρ−α−β)

Notes: where It−1 = 1 if εt−1 < 0, and 0 otherwise. The existence of the fourth moment implies that E[ε4
t ]<∞, which is satisfied if

kα2 +2αβ+β2 < 1 and kα2 +2αβ+β2 +βγ+kαγ+kδγ2 < 1 for the GARCH(1,1) and GJR-GARCH(1,1) models, respectively.

Under a Normal distribution k = 3 and δ = 1
2 .
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Figure 2: Bitcoin prices, returns and squared returns - July 2010 to March 2018.
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Table 4: Jumps detected in the Bitcoin returns.

Date t-stat Percent change Events

07-22-2010 4.58 -47.0 Mt.Gox exchange opens

11-06-2010 3.53 40.1 Bitcoin economy passed $1 million

01-14-2011 7.93 22.3 The Silk Road website (online black market) opens

01-20-2011 4.37 23.0 The Electronic Frontier Foundation accepts Bitcoins

02-01-2011 4.63 29.7 Parity between the US dollar and the Bitcoin

04-04-2011 6.70 -13.7 Three Bitcoin exchanges open

06-11-2011 3.95 -49.2 Hacking of Mt.Gox exchange

08-03-2011 10.23 -26.3 Bitomat exchange lost wallet data

08-06-2011 6.61 -40.3 MyBitCoin (e-wallet service) shuts down

09-09-2011 3.76 -26.1 Massive sellof

10-17-2011 6.91 -33.0 ExchB exchange shuts down

11-14-2011 7.34 -30.1 High trading

02-14-2012 4.25 -16.5 Paxum (online payment service) stops accepting Bitcoins

03-19-2012 5.87 -11.9 Bug in Bitcoin-Qt (ex Bitcoin Core)

08-17-2012 5.71 -15.3 Bitcoins Savings & Trust halts payments (Ponzi scheme)

07-01-2013 5.05 -14.2 Germany plans tax on Bitcoins

10-02-2013 15.59 -22.9 The Silk Road website shuts down

11-18-2013 4.56 34.8 US Senate qualifies Bitcoin as a “legitimate” currency

02-07-2014 3.93 -10.8 Attacks against major Bitcoin exchanges

03-27-2014 8.36 -19.1 IRS declares Bitcoins to be taxed as property

04-10-2014 6.53 -19.9 Chinese Bitcoin exchanges’ bank accounts closed

05-20-2014 6.31 8.9 Thai Bitcoin Exchange is coming back online

09-18-2014 4.57 -7.6 Upcoming IPO of Alibaba

11-12-2014 5.77 15.2 Microsoft accepts Bitcoins

01-03-2015 5.40 -11.7 Hacking of Bitstamp exchange

01-13-2015 4.86 -16.3 Announcement of Bitcoin auction by the US Marshals Service

01-14-2015 5.50 -24.7 Announcement of closing Vault of Satoshi exchange

08-08-2015 5.08 -7.0 Closing exchange services to residents of New Yor state (BitLicense)

08-18-2015 9.72 -16.0 Launch of Bitcoin XT by Mike Hearn et Gavin Andresen (Bitcoin Core developers)

01-15-2016 9.90 -18.1 Mike Hearn quits Bitcoin

04-27-2016 4.32 -5.0 Payment institution status for Bitstamp

05-28-2016 5.51 10.4 Bankruptcy of KnCMiner

06-12-2016 3.98 9.9 Attack on Etherrum network

08-02-2016 4.63 -9.4 Theft on Bitfinex exchange

01-05-2017 4.01 -11.6 Intervention of the People’s Bank of China

01-11-2017 4.64 -15.4 End of margin trading on Chinese platforms

07-20-2017 4.07 22.6 Avoid a split into two cryptocurrencies of the Bitcoin

09-14-2017 4.49 -18.3 Closure of the Chinese exchanges BTCC and ViaBTC

10-12-2017 4.69 11.9 Japanese licenses to cryptocurrecncy stock exchanges

12-07-2017 4.09 20.7 High trading volume

01-16-2018 3.93 -18.0 Announcement of the Lightning Network protocol

Notes: The Gumbel critical value with T = 2,803 and α = 0.5 is 3.84.
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