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Katsiampa [Volatility estimation for Bitcoin: A comparison of GARCH mod-els.

Economics Letters, 158, 3-6, 2017] compares several GARCH-type models to estimate volatility for Bitcoin returns. First, we propose a replication study (i) by verification, using the same sample and period (July 2010 to October 2016), and (ii) by reproduction, extending the sample until March 2018. We obtain only partially different results from those of Kasiampa (2017) on both samples. Sec-ond, we propose a robustness analysis (i) by reanalysis, using the robust QML estimator for computing the standard errors of the parameters, and (ii) by exten-sion, taking into account the presence of jumps in the Bitcoin returns. The results show that the six GARCH-type models studied, namely GARCH-type models characterized by short memory, asymmetric effects, or long-run and short-run movements, seem not to be appropriate for modelling the Bitcoin returns.

Introduction

Reproducibility, replicability and robustness are fundamental characteristics of scientific studies. Replication, reproduction and robustness studies stimulate scientific rigor and enhance the validity and reliability of published research. Burman et al. (2010) emphasize that replication is a critical tool for scientific progress and that the absence of such studies "is particularly problematic because empirical economic research is often prone to error". [START_REF] Andersen | No-arbitrage semi-martingale restrictions for continous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications[END_REF] However, there is no consensus on definitions for the concepts of reproducibility, replicability and robustness (see, e.g., Arulampalam et al., 1997; Pesaran, 2003; Hamermesh, 2007; Clemens, 2017), which can lead to confusion. In order to avoid confusion on these concepts Clemens (2017) identifies four categories that we present briefly in Figure 1: 2 These issues are of increasing importance for the scientific literature as shown by the computational infrastructures (e.g., runmycode.org, Hurlin et al, 2012, codeocean.com), the websites providing information on replication studies (e.g., Replication in Economics or Replication Network), the special sections proposed by some journals (e.g., "Replication section" in Journal of Applied Econometrics or "Data, Tools, and

Replication" in International Economics, the special issue on replication in Energy Economics), the replication policy to make data and code available by some journals on their website (e.g., The American Economic Review, Econometrica, Review of Economic Studies, Journal of Applied Econometrics, etc.) [START_REF] Baur | Bitcoin, gold and the US dollar -A replication and extension[END_REF] Cryptocurrencies, such as Bitcoin, are a new breed of digital currency systems built on computer cryptology and decentralized (peer-to-peer) network architecture.

Bitcoin, the most popular virtual (digital) currency and cryptocurrency (Nakamoto, 2008), is an open source virtual currency, as it is managed by an open source software algorithm that uses the global internet network both to create Bitcoins as well as to record and verify its transactions. [START_REF] Böhme | Bitcoin: Economics, Technology, and Governance[END_REF] While central authorities and central banks guarantee or have control over standard (fiat) currencies, Bitcoin is fully decentralized and depends on a sophisticated protocol that uses only cryptography to control transactions, manage its supply, and prevent harmful actions that may endanger the system. All transactions are stored digitally and recorded in a shared ledger data technology known as blockchain (see, e.g., Dwyer, 2015; Böhme et al., 2015). [START_REF] Bollerslev | Generalized Autoregressive Conditional Heteroskedasticity[END_REF] Since its inception in January 2009, Bitcoin exhibits an extreme increase of its market 

Replication study

In this section we follow Katsiampa (2017) and consider the returns series r t , described by a Normal AR(1)-GARCH(1,1) model:

r t = µ t + ε t , µ t = c + ∞ ∑ i=1 ξ i ε t-i , (1) 
ε t = σ t z t , z t ∼ i.i.d.N(0, 1), (2) 
σ 2 t = ω + αε 2 t-1 + βσ 2 t-1 , (3) 
where ε t is the error term, z t is a white noise process, σ t is the conditional standard deviation, and ξ i are the coefficients of

ξ(L) = φ -1 (L) = 1 + ∑ ∞ i=1 ξ i L i
, with L the lag operator and φ(L) the AR polynomial of order 1.

For the conditional variance σ 2 t we consider six different GARCH-type models, namely GARCH (Bollerslev, 1986), EGARCH (Nelson, 1991), GJR-GARCH (Glosten et al., 1993) [START_REF] Bouri | On the return-volatility relationship in the Bitcoin market around the price crash of 2013[END_REF] , Asymmetric Power ARCH (APARCH, Ding et al., 1993), Component GARCH and Asymmetric Component GARCH (CGARCH and ACGARCH, respectively, Engle and Lee, 1993) models. A brief presentation of the models is given in Table 2. [START_REF] Burman | A call for replication studies[END_REF] 

Replication by verification

We use the same data and sample period as in Katsiampa (2017), covering July 18, 2010 to October 01, 2016 (2 268 observations). [START_REF] Carnero | Outliers and conditional autoregressive heteroskedasticity in time series[END_REF] The Bitcoin returns are calculated as the first differences of the logarithmic prices, defined by r t = log P tlog P t-1 , where P t is the observed price at time t. The graphical representations of prices, returns and volatility are in Figure 1.

The replication of the summary statistics for Bitcoin returns are presented in Table 1 (Panel A). However, the values are not equal to Katsiampa (2017), whatever the descriptive statistics. We then compute the descriptive statistics on the Bitcoin returns calculated as arithmetic returns defined by r g t = (P t -P t-1 )/P t-1 and find exactly the same values to those displayed in Katsiampa (2017). Even if the different approaches to calculate the returns do not change the main characteristics of Bitcoin [START_REF] Bouri | On the return-volatility relationship in the Bitcoin market around the price crash of 2013[END_REF] Note that Katsiampa (2017) estimates a TARCH model whereas we estimate a GJR-GARCH model. However, the estimated parameters are the same because EViews proposes the estimation of a TARCH model but its TARCH model is estimated on σ 2 t and not on σ t as defined in Rabemananjara and Zakoian (1993). Its TARCH specification is rather similar to the GJR-GARCH model of Glosten et al. (1993). [START_REF] Burman | A call for replication studies[END_REF] The parameters of the volatility models are estimated by the quasi-maximum likelihood (QML) method and the quasi-likelihood function is maximized using the quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno (BFGS) with the Marquardt correction, namely the same code and software as in Katsiampa (2017). In a previous version of the study we have used the Berndt-Hall-Hall-Hausman (BHHH) algorithm with the Marquardt correction, from the default option of EViews 7.0. Katsiampa (2017) did not give information about the software package used in estimation, what the default estimation methods are, such as method to optimize the likelihood function or how the standard errors are computed. We have tried different software packages and only EViews produced similar results to those obtained in Katsiampa (2017). However, in an author's reply to this previous study she mentions that the BFGS optimization method with Marquardt step method was employed, and the standard errors were computed from the outer product of the gradient (OPG) estimator, from the default option of EViews 9.0. 10 Bitcoin price data is downloaded from coindesk.com.

returns, namely highly non-Normal, evidence of significant excess skewness and kurtosis, and strong conditional heteroscedasticity, except for excess skewness which is with the opposed sign, these differences could have implications in the estimation of GARCH-type models.

Table 3 shows the estimation results of the GARCH-type models, computed using 

Replication by reproduction

We now propose a replication by reproduction of the Katsiampa's (2017) study by estimating the GARCH-type models on a longer period, namely until March 22, 2018, producing 2, 803 observations (see Figure 2). For this analysis we use Bitcoin logarithmic returns, r t .

Table 1 (Panel B) presents the summary statistics and shows the same main characteristics as those for the shorter period, namely highly non-Normal, evidence of significant excess skewness and kurtosis, and strong conditional heteroscedasticity.

After the estimation of the models, the AR(1)-CGARCH model seems to be again the best specification (Table 5).

Robustness analysis

In this section we first reanalyze the study of Katsiampa (2017) by computing robust standard errors of the parameters in the GARCH-type models, and second we extend her study by taking into account the presence of jumps, which can be classified as robustness tests.

Robustness by reanalysis

Since the Bitcoin returns are characterized by non-Normality we apply a more appropriate estimator for computing standard errors rather than the outer product of the gradient (OPG) estimator. For that, the so-called QML "sandwich" estimator (also known as robust covariance matrix estimator or heteroscedasticity-consistent covariance matrix estimator) proposed by Bollerslev and Wooldridge (1992) is used to compute robust standard errors of the parameters in the GARCH-type models.

The covariance matrix is estimated using both matrices of second order derivatives (the Hessian matrix, H(.)) and outer products of first derivatives (or OPG, B(.)) of the log-likelihood function:

Q( θ) = H( θ QML ) -1 B( θ QML )H( θ QML ) -1 ,
where θ QML is the robust QML estimator of θ, and the coefficient standard errors as the (robust) Bollerslev-Wooldridge standard errors. [START_REF] Carnero | Effects of outliers on the identification and estimation of the GARCH models[END_REF] The results are displayed in brackets in Table 3 and show that the asymmetric parameters are become not statistically significant for all the asymmetric models. This finding is not consistent with the presence of asymmetry detected from asymmetric The GARCH model is the only volatility model for which all the parameters are [START_REF] Carnero | Effects of outliers on the identification and estimation of the GARCH models[END_REF] Katsiampa (2017) uses the OPG estimator for computing standard errors, given by

I( θ) ≈ E B( θ) = E ∑ T t=1 G t ( θ)G t ( θ) = E ∂lnL ∂θ ∂lnL
∂θ , with G(.) the gradient matrix.

statistically significant, however its stationarity and fourth-moment conditions are not satisfied.

In Table 5 we estimate the GARCH-type models on the longer period (2010-2018) and the robust QML t-statistics are given in brackets. The results confirm those obtained for the shorter period.

Robustness by extension

We apply the semi-parametric procedure to detect jumps proposed by Laurent et al.

(LLP) (2016). Their test is similar to the non-parametric tests for jumps in Lee and Mykland (2008) and Andersen, Bollerslev, and Dobrev (2007) for daily data.

The returns r t are described by the AR(1)-GARCH(1,1) model of equations ( 1)-( 3).

Consider the return series with an independent jump component a t I t , defined as:

r * t = r t + a t I t , (4) 
where r * t denotes the observed returns, I t is a dummy variable for a jump on day t, and a t is the jump size. In equation ( 4) a jump a t I t will not affect σ 2 t+1 (the conditional variance of r t+1 ), so that we can have non-Gaussian fat-tailed conditional distributions of r * t . The bounded innovation propagation (BIP)-AR(1) proposed by Muler, Peña and Yohai (2009) and the BIP-GARCH(1,1) of Muler and Yohai (2008) is used to obtain robust estimates of µ t and σ 2 t respectively in equations ( 1) and (3). These are denoted by µ t and σ t and are robust to potential jumps a t I t (i.e. they are estimated on r * t and not on r t ). The BIP-AR(1) and BIP-GARCH(1,1) are defined as:

µ t = µ + ∞ ∑ i=1 ξ i σ t-i ω MPY k δ ( J t-i ), (5) 
σ 2 t = ω + α 1 σ 2 t-1 c δ ω MPY k δ J t-1 2 + β 1 σ 2 t-1 , (6) 
where ξ i are the coefficients from the AR(1) polynomial defined in equation (1),

ω MPY k δ (.
) is the weight function, and c δ a factor ensuring that the conditional expectation of the weighted square of unexpected shocks equals the conditional variance of r t in the absence of jumps (Boudt et al., 2013).

Consider the standardized return on day t given by:

J t = r * t -µ t σ t . (7) 
LLP detect the presence of jumps by testing the null hypothesis H 0 : a t I t = 0 against the alternative H 1 :

a t I t = 0. The null is rejected if max T | J t | > g T,λ , t = 1, . . . , T, (8) 
where g T,λ is the suitable critical value. [START_REF] Ciaian | Virtual relationships: Short-and long-run evidence from BitCoin and altcoin markets[END_REF] If H 0 is rejected a dummy variable is defined as follows:

I t = I | J t | > k , (9) 
where I(.) is the indicator function, with I t = 1 when a jump is detected at time t. The filtered returns r t are obtained as follows:

r t = r * t -(r * t -µ t ) I t . (10) 
Laurent et al. ( 2016) extend this test for additive jumps in AR-GARCH models, called BIP-AR-BIP-GARCH models, to AR-GJR-GARCH models, called BIP-AR-BIP-GJR models, to account for asymmetric effects.

In Table 4, detected jumps are given with their timing and t-statistics as well as the percent changes. A number of jumps is found in the daily Bitcoin returns during the whole period, giving strong proof of infrequent large shocks. This finding shows the importance to take into account these large shocks in modelling the volatility of Bitcoin returns. We also try to associate the date of each jumps with a specific event that occurred near that date, presenting the jump dates in chronological order.

Overall, most of jumps seem to be associated with attacks, hacks, thefts, closings or bankruptcies of Bitcoin exchange platforms and Bitcoin services, such as the hacking of the Japanese-based Mt.Gox exchange (-49%) on June 11, 2011. [START_REF] Clemens | The meaning of failed replications: A review and proposal[END_REF] We just give few detailed explanations on jumps associated with "technical" issues of Bitcoin due to its specific functioning. Bitcoin Core is the reference implementation of Bitcoin. Initially, the software was published by Satoshi Nakamoto under the name "Bitcoin", then "Bitcoin-Qt" and later renamed to "Bitcoin Core" to distinguish [START_REF] Ciaian | Virtual relationships: Short-and long-run evidence from BitCoin and altcoin markets[END_REF] The critical values are defined by g T,λ =log (log(1λ)) b T + c T , with b T = 1/ √ 2 log T , and The estimation results of the GARCH-type models on the filtered returns (Panel B, Table 5) show that the better specification for the Bitcoin returns is the GARCH model, as this is the only volatility model for which all the parameters are statistically significant. The value of α decreases and the value of β increases when the data are cleaned of jumps. This finding is in line with those of Carnero et al. (2001, 2007), showing that this behavior on volatility parameters can be due to jumps. The stationarity condition is satisfied but the existence of the fourth moment is not satisfied.

c T = (2 log T ) 1/2 -[log π + log(log T )]/[2(2 log T ) 1/2 ].
Finally, our results suggest that asymmetric and component GARCH models are not appropriate for modelling the Bitcoin returns as well as the standard GARCH model.

Conclusion

This paper proposed a replication in two ways of the Katsiampa's (2017) study on volatility estimation for Bitcoin returns based on six GARCH-type models, where the best specification is the AR-CGARCH model. We first replicated by verification on the same sample and period (2010-2016), and second by reproduction on a longer period (2010-2018). Our results are only partially different from those of Kasiampa (2017) in terms of values of GARCH coefficients and t-ratios due to the difference in computing the returns. We then proposed robustness tests in two ways. We first reanalyzed her study by using robust QML estimator which is robust to conditional non-Normality to produce standard errors of the estimated parameters. We found that all the GARCHtype models are rejected because either the parameters are not statistically significant or the stationarity condition is not satisfied. Second, we extended the study by detecting jumps in volatility and analyzing their effect on volatility modelling on the Bitcoin returns. We found that the Bitcoin returns are strongly characterized by the presence of jumps. The results on the filtered returns show that the six GARCHtype models studied, namely GARCH-type models characterized by short memory, asymmetric effects, or long-run and short-run movements, are not appropriate for modelling the Bitcoin returns. Therefore, it would be interesting to extend this work to long-memory and Markow-switching multifractal models. 

GARCH σ 2 t = ω + αε 2 t-1 + βσ 2 t-1 ω > 0, α ≥ 0, α + β < 1 β ≥ 0 GJR-GARCH σ 2 t = ω + (α + γ I t-1 ) ε 2 t-1 + β σ 2 t-1 ω > 0, α, γ, β ≥ 0 α + β + (γ/2) < 1 α + γ ≥ 0 EGARCH ln(σ 2 t ) = ω + g(z t-1 ) + β ln(σ 2 t-1 ) |β| < 1 g(z t ) = θ 1 (|z t | -E(|z t |)) + θ 2 z t APARCH σ δ t = ω + α (|ε t-1 | -γε t-1 ) δ + βσ δ t-1 ω > 0, α ≥ 0, β ≥ 0, -1 < γ < 1 CGARCH σ 2 t = q t + α(ε 2 t-1 -q t-1 ) + β(σ 2 t-1 -q t-1 ) α, β, θ ≥ 0 0 < α + β < ρ ≤ 1 q t = ω + ρ(q t-1 -ω) + θ(ε 2 t-1 -σ 2 t-1 ) ω > 0 θ < β < 1 ACGARCH σ 2 t = q t + α(ε 2 t-1 -q t-1 ) + β(σ 2 t-1 -q t-1 ) 0 ≤ α < ρ, ω > 0, 0 ≤ θ < β 0 ≤ ρ < 1 +γ(ε 2 t-1 -q t-1 ) I t-1 0 ≤ β < (ρ -α) q t = ω + ρq t-1 + θ(ε 2 t-1 -σ 2 t-1 ) 0 ≤ γ < (ρ -α -β)
Notes: where I t-1 = 1 if ε t-1 < 0, and 0 otherwise. The existence of the fourth moment implies that LL is the log-likelihood value, AIC and HQ correspond to the Akaike and Hannan-Quinn criteria, respectively. Q (10) and Q 2 (10) are respectively the Box-Pierce statistics with lag 10 of the standardized and squared standardized residuals. These are asymptotically distributed as

E[ε 4 t ] < ∞, which is satisfied if kα 2 + 2αβ + β 2 < 1 and kα 2 + 2αβ + β 2 + βγ + kαγ + kδγ 2 < 1 for the GARCH(1,
χ 2 (k),
where k is the lag length. ARCH( 5) is the ARCH LM test with lag 5. This is distributed as

χ 2
(q), where q is the lag length. * and * * indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The standard and robust t-ratios appear in parentheses and brackets, respectively. The best in-sample criteria appear in bold.

  arithmetic (Panel A) and logarithmic returns (Panel B). The comparison between the volatility models is effected via various in-sample criteria: Log-Likehood (LL), Akaike (AIC) and Hannan-Quinn (HQ). Each time, the best model appears in bold showing the highest value of LL and the lowest values of AIC and HQ. The residual tests are also shown to see whether the chosen volatility model is the most appropriate.When estimating GARCH-type models on returns computed as arithmetic returns we find exactly the same values for GARCH parameters, t-ratios, in-sample criteria and residual tests as inKatsiampa (2017), whatever the GARCH-type models, except for the ACGARCH models where the estimations are slightly different. Nevertheless, we also find that the Bitcoin volatility is best modelled by the AR(1)-CGARCH model.When estimating GARCH-type models on returns computed as logarithmic returns we find similar values of GARCH coefficients and t-ratios for all the GARCH-type models. The AR(1)-CGARCH model stays the best specification for the Bitcoin returns. Overall, our results are only partially different from those of Kasiampa (2017) due to the difference in computing the returns.

  volatility models by Katsiampa (2017), Bouri et al. (2017) and Baur et al. (2018).[START_REF] Charles | Relevance of detecting outliers in GARCH models for modelling and forecasting financial data[END_REF] 

Finally, as emphasizedFigure 1 :

 1 Figure 1: Bitcoin prices, returns and squared returns -July 2010 to October 2016.

  1) and GJR-GARCH(1,1) models, respectively. Under a Normal distribution k = 3 and δ = 1 2 .

  Laurent et al. (2016) suggest setting λ = 0.5. from the network. On 19 March, 2012, a bug on Bitcoin-Qt implies a fall of Bitcoin (-11.9%). On 18 August, 2015, Bitcoin Core developers Mike Hearn and Gavin Andresen release a separate version of the Bitcoin client software, called Bitcoin XT.

	Bitcoin XT implements BIP 101 15 , which proposes replacing the fixed one megabyte
	maximum block size with a maximum size that grows over time at a predictable rate.
	The release of Bitcoin XT culminated fears that the Bitcoin community may not be
	able to reach a consensus on the issue, and the blockchain may hard fork, resulting in
	two separate versions of Bitcoin's global ledger (-16%). On July 20, 2017, the Bitcoin
	averted a split into two currencies after its network (miners) supported an upgrade to
	its software, the so-called BIP 91 through a software called SegWit2x (Segregated Wit-

[START_REF] Clemens | The meaning of failed replications: A review and proposal[END_REF] 

Note that the year 2010 is characterized by a lot of zero returns. it ness), that would enhance its ability to process an increasing number of transactions

(22.6%)

. The announcement of the first version of the Lightning Network protocol on January 16, 2018 can explain the fall of Bitcoin (-18%). This payment protocol is touted as a solution to the Bitcoin scalability problem. It could enable (almost) instant transactions between participating, including micro-transactions, for a very low price.

Table

1

(Panel B) presents the summary statistics for the filtered returns and show that the jump-filtered returns ( r t ) also exhibit excess skewness, excess kurtosis and conditional heteroscedasticity, although the excess kurtosis and skewness decrease dramatically. Note that the original returns exhibit negative excess skewness while the filtered returns display positive excess skewness, signifying that the series have a longer right tail (extreme gains) than left tail (extreme losses).

Table 1 :

 1 Descriptive statistics.Notes: * * denotes significance at the 5% level. Growth rate and Log 1st diff. indicate that the returns are calculated as a growth rate, defined by r Original and Filtered indicate that the descriptive statistics are calculated on the original and jump-filtered returns, respectively, and the returns are calculated as the first differences in the logs of the prices.

	ARCH(5)		54.36935 *	59.47672 *		72.52037 *	124.5632 *		
	Obs. Mean Median Max Min Std. Skew Kurt JB	Panel A: 2010-2016	Growth rate 2267 0.005778 0.000290 0.528947 -0.388309 0.061737 0.857187 * 15.11666 * 14145.36 *	Log 1st diff. 2267 0.003894 0.000290 0.424580 -0.491528 0.061248 -0.371206 * 14.96872 * 13583.25 *	Panel B: 2010-2018	Original 2803 0.004103 0.001427 0.424580 -0.491528 0.058896 -0.355962 * 14.63687 * 15874.73 *	Filtered 9.984921 * 5717.31 * 2803 0.005080 0.001970 0.308564 -0.332134 0.049564 0.202438 *	g t = (P t-1 , and as the first differences t-1 )/P t -P	in the logs of the prices, defined by r t = log P t -log P t-1 , respectively, where P

t is the observed price at time t.

Table 2 :

 2 GARCH(1,1)-type models.

	Constraints

Table 3 :

 3 Estimates of GARCH-type models for Bitcoin returns on original data -July 2010 to October 2016. LL is the log-likelihood value, AIC and HQ correspond to the Akaike and Hannan-Quinn criteria, respectively. Q(10) 

	Parameters In-sample criteria Residual tests	ω α β γ δ/ρ θ LL AIC HQ Q(10) Q 2 (10) ARCH(5)	Panel A: growth rate	0.73 GARCH 0.0001 0.2363 0.7753 3844.4 -3.3887 -3.3841 40.9 * 6.01	(28.1) (20.8) (117.8)	0.33 EGARCH -0.6759 0.4008 27.9 (-31.8) 0.9328 (348.8) 0.0251 (2.68) 3834.3 -3.3789 -3.3734 43.4 * 3.56	0.76 GJR-GARCH 0.0001 0.2577 0.7752 -0.0476 3845.7 -3.3890 -3.3835 39.8 * 6.22	(26.9) (15.6) (112.3) (-2.67)	1.05 APARCH 0.0003 0.2391 0.7839 -0.0517 1.6560 3847.8 -3.3900 -3.3835 39.8 * 7.70	(3.62) (22.6) (118.5) (-2.56) (21.5)	0.33 CGARCH 0.1327 * * 0.1825 0.7855 0.9999 0.0549 3885.7 -3.4234 -3.4169 44.3 * 4.73	(1.76) (19.2) (86.1) (17074.6) (12.4)	0.05 ACGARCH 0.0035 0.14434 0.6552 0.0512 0.9923 0.0915 3865.5 -3.4047 -3.3973 39.3 * 2.58	(3.26) (10.8) (21.8) (3.79) (448.0) (10.5)	Panel B: log first diff.	0.45 GARCH 0.0001 0.2510 0.7630 3835.0 -3.3804 -3.3758 36.0 * 4.52	(28.8)[2.63] (22.4)[5.61] (115.5)[22.2]	0.20 EGARCH -0.7475 0.4231 0.9232 0.0208 (2.07)[0.52 * (-31.9)[-3.99] (28.3)[7.58] (321.7)[34.3] ] 3830.0 -3.3751 -3.3696 35.4 * 2.92	0.47 GJR-GARCH 0.0001 0.2756 0.7640 -0.0539 (-2.76)[-0.63 * (27.6)[2.64] (14.9)[5.18] (109.4)[21.8] ] 3836.4 -3.3808 -3.3753 35.1 * 4.64	0.65 APARCH 0.0004 (4.28)[0.77 * ] 0.2527 (24.0)[5.53] 0.7754 (118.4)[17.5] -0.0392 (-1.89)[-0.39 * ] 1.5627 (23.8)[3.62] 3839.9 -3.3829 -3.3765 34.8 * 5.55	0.13 CGARCH 0.1704 (2.22)[0.01 * ] 0.2080 (19.5)[0.06 * ] 0.7583 (72.0)[0.19 * ] 0.9999 (218173.2)[1.93] 0.0601 (13.3)[0.01 * ] 3870.3 -3.4098 -3.4034 38.6 * 2.93	0.11 ACGARCH 0.0042 (3.42)[0.27 * ] 0.1292 (7.27)[0.40 * ] 0.5662 (14.2)[1.23 * ] 0.0852 (4.93)[0.70 * ] 0.9891 (333.3)[51.7] 0.1154 (11.2)[0.36 * ] 3854.4 -3.3949 -3.3875 37.9 * 2.74	and Q 2 (10) are respectively the Box-Pierce statistics with lag 10 of	the standardized and squared standardized residuals. These are asymptotically distributed as χ 2 (k), where k is the lag length. ARCH(5) is the ARCH LM test with lag 5. This is distributed as	appear in parentheses and brackets, χ 2 (q), where q is the lag length. * and * * indicate that the null hypothesis is rejected at the 5% and 10% level, respectively. The standard and robust t-ratios	respectively. The best in-sample criteria appear in bold.

Notes:

Table 4 :

 4 Jumps detected in the Bitcoin returns.

	Date	t-stat	Percent change Events
	07-22-2010	4.58	-47.0	Mt.Gox exchange opens
	11-06-2010	3.53	40.1	Bitcoin economy passed $1 million
	01-14-2011	7.93	22.3	The Silk Road website (online black market) opens
	01-20-2011	4.37	23.0	The Electronic Frontier Foundation accepts Bitcoins
	02-01-2011	4.63	29.7	Parity between the US dollar and the Bitcoin
	04-04-2011	6.70	-13.7	Three Bitcoin exchanges open
	06-11-2011	3.95	-49.2	Hacking of Mt.Gox exchange
	08-03-2011	10.23	-26.3	Bitomat exchange lost wallet data
	08-06-2011	6.61	-40.3	MyBitCoin (e-wallet service) shuts down
	09-09-2011	3.76	-26.1	Massive sellof
	10-17-2011	6.91	-33.0	ExchB exchange shuts down
	11-14-2011	7.34	-30.1	High trading
	02-14-2012	4.25	-16.5	Paxum (online payment service) stops accepting Bitcoins
	03-19-2012	5.87	-11.9	Bug in Bitcoin-Qt (ex Bitcoin Core)
	08-17-2012	5.71	-15.3	Bitcoins Savings & Trust halts payments (Ponzi scheme)
	07-01-2013	5.05	-14.2	Germany plans tax on Bitcoins
	10-02-2013	15.59	-22.9	The Silk Road website shuts down
	11-18-2013	4.56	34.8	US Senate qualifies Bitcoin as a "legitimate" currency
	02-07-2014	3.93	-10.8	Attacks against major Bitcoin exchanges
	03-27-2014	8.36	-19.1	IRS declares Bitcoins to be taxed as property
	04-10-2014	6.53	-19.9	Chinese Bitcoin exchanges' bank accounts closed
	05-20-2014	6.31	8.9	Thai Bitcoin Exchange is coming back online
	09-18-2014	4.57	-7.6	Upcoming IPO of Alibaba
	11-12-2014	5.77	15.2	Microsoft accepts Bitcoins
	01-03-2015	5.40	-11.7	Hacking of Bitstamp exchange
	01-13-2015	4.86	-16.3	Announcement of Bitcoin auction by the US Marshals Service
	01-14-2015	5.50	-24.7	Announcement of closing Vault of Satoshi exchange
	08-08-2015	5.08	-7.0	Closing exchange services to residents of New Yor state (BitLicense)
	08-18-2015	9.72	-16.0	Launch of Bitcoin XT by Mike Hearn et Gavin Andresen (Bitcoin Core developers)
	01-15-2016	9.90	-18.1	Mike Hearn quits Bitcoin
	04-27-2016	4.32	-5.0	Payment institution status for Bitstamp
	05-28-2016	5.51	10.4	Bankruptcy of KnCMiner
	06-12-2016	3.98	9.9	Attack on Etherrum network
	08-02-2016	4.63	-9.4	Theft on Bitfinex exchange
	01-05-2017	4.01	-11.6	Intervention of the People's Bank of China
	01-11-2017	4.64	-15.4	End of margin trading on Chinese platforms
	07-20-2017	4.07	22.6	Avoid a split into two cryptocurrencies of the Bitcoin
	09-14-2017	4.49	-18.3	Closure of the Chinese exchanges BTCC and ViaBTC
	10-12-2017	4.69	11.9	Japanese licenses to cryptocurrecncy stock exchanges
	12-07-2017	4.09	20.7	High trading volume
	01-16-2018	3.93	-18.0	Announcement of the Lightning Network protocol

Notes:

The Gumbel critical value with T = 2, 803 and α = 0.5 is 3.84.

Table 5 :

 5 Estimates of GARCH-type models for Bitcoin returns on original data -July 2010 to March 2018.

	Residual tests	Q 2 (10) ARCH(5)	4.52 0.45		--		4.64 0.47		7.17 0.70		2.93 0.13	2.74 0.11		13.7 1.32								
		Q(10)	36.0 *		-		35.1 *		43.4 *		38.6 *	37.9 *		29.1 *								
	In-sample criteria	LL AIC HQ	4777.6 -3.4066 -3.4028		---		4778.6 -3.4066 -3.4020		4782.6 -3.4087 -3.4034		4816.4 -3.4329 -3.4275	4814.6 -3.4308 -3.4247		5307.5 -3.7848 -3.7810		---		---		---		---	---
											]		]									
		θ									0.0600 (13.9)[0.01 *	0.0454 (4.80)[1.17 *										0.1716	[6.06]
											]											
		δ/ρ							1.5577	(24.8)[4.20]	0.9999 (22106.5)[1.92 * *	0.9987	(985.7)[244.2]							2.1410	[3.02]	0.1710	[7.00]	0.9909	[54.4]
	Parameters	β γ	0.7732	(125.2)[26.1]	0.9308 0.0132 (1.54 * (362.0)[41.7] )[0.38 * ]	0.7742 -0.0369 (-2.18)[-0.53 * (118.9)[25.9] ]	0.7859 -0.0266 (-1.42 * (131.4)[20.8] ] )[-0.31 *	0.7892 (87.9)[0.23 * ]	0.7817 0.0218 (3.82)[0.48 * (70.0)[15.3] ]	0.8116	[37.1]	0.9584 0.0309 [1.14 * [61.8] ]	0.8150 -0.0527 [-1.21 * [37.9] ]	0.8108 -0.0721 [-1.16 * [21.3] ]	0.6108 [1.17 * ] 0.9909 [55.8]	[1.03 * ] 0.6070 [-0.17 * -0.0111 ]
		α	0.2384	(23.6)[6.54]	0.4042	(28.3)[8.33]	0.2555	(15.8)[5.93]	0.2404	(25.6)[6.38]	0.1765 (19.1)[0.06 * ]	0.1643	(15.1)[5.47]	0.1805	[8.01]	0.3161	[7.19]	0.2024	[7.04]	0.1723	[5.82]	0.0325 [0.98 * ]	[0.74 * 0.0364 ]
		ω	0.0001	(29.7)[2.75]	-0.6959	(-32.9)[-4.43]	0.0001	(28.8)[2.74]	0.0004 (4.45)[0.89 * ]	0.1723 (2.39)[0.01 * ]	] (1.29 * 0.0066 )[0.32 *	0.0001	[2.10]	-0.4942	[-4.22]	0.0001	[2.12]	0.0001 [0.45 * ]	0.0045 [0.63 * ]	[0.62 * 0.0044 ]
		Panel A: original	GARCH		EGARCH		GJR-GARCH		APARCH		CGARCH	ACGARCH	Panel B: filtered	GARCH		EGARCH		GJR-GARCH		APARCH		CGARCH	ACGARCH	Notes:

The information is available at: www.coindesk.com (CoinDesk) and https://coinmarketcap.com (CoinMarketCap).

In his definition of 'new data' for robustness test by extension Clemens (2017) includes "dropping influential observations, since a truncated sample cannot represent the same population" (p. 327).

Bouri et al. (2017) fit GRJ-GARCH(1,1) and EGARCH(1,1) models from August 18, 2011 to April 29, 2016, and Baur et al. (2018) estimate a GJR-GARCH(1,1) model from July 19, 2010 to July 14, 2017. Note that Baur et al. (2018) use Bitcoin prices from CoinDesk whereas Bouri et al. (2017) use data from Bitstamp.

A Bitcoin Improvement Proposal (BIP) is a design document for introducing features or information to Bitcoin. This is the standard way of communicating ideas since Bitcoin has no formal structure.