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Appendix A. Identification and estimation of the Lee-Carter mortality model

The Lee and Carter (1992) model consists of a system of equations for logarithms of

central death rates for age cohort x at time t , mx,t, , and a time-series equation for an

unobservable time-varying mortality index kt:

ln (mx,t) = ax + bxkt + εx,t(A.1)

kt = c0 + c1kt−1 + et(A.2)

εx,t ∼ NID
(
0, σ2

ε

)
et ∼ MeanZero - Stationary Process

where ax and bx are age-specific constants. The error term εx,t captures cross-sectional

errors in the model based prediction for mortality of different cohorts, while the error term

et captures random fluctuations in the time series of the common factor kt driving mortality

at all ages. This common factor, usually known as the unobservable mortality index evolves

over time as an autoregressive process and the favorite Carter-Lee specification makes is a

unit-root process by setting c1 = 1. Identification is achieved by imposing the restrictions∑
t kt = 0 and

∑
x bx = 1, so that the unobserved mortality index kt is estimated through

Singular Value Decomposition (SVD). SVD is a technique based on a theorem of linear

algebra stating that a (m×n) rectangular matrix M can be broken down into the product

of three matrices - an (m × m) orthogonal matrix U , a diagonal (m × n) matrix S, and

the transpose of an orthogonal (n × n) matrix V . The SVD of the matrix M will be

therefore be given by M = USV ′ where U ′U = I and V ′V = I. The columns of U are
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orthonormal eigenvectors of AA′ , the columns of V are orthonormal eigenvectors of A′A,

and S is a diagonal matrix whose elements are the square roots of eigenvalues from U or V

in descending order. The restriction
∑

t kt = 0 implies that ax is the average across time of

qx,t, and Equation A.1 can be rewritten in terms of the mean-centered log-mortality rate

as

(A.3) mx,t −mx,t ≡ m̃x,t = bxkt + εx,t.

Grouping all the m̃x,t in a unique (X × T ) matrix m̃ (where the columns are mortality

rates at time-t ordered by age groups and the rows are mortality rates through time for

a specific age-group x), leads naturally to use SVD to obtain estimates of bx and kt. In

particular, if m̃ can be decomposed as m̃ = USV ′, b = [b0, b1, . . . , bX ] is represented by the

normalized first column of U, u1 = [u0,1, u1,1, . . . , uX,1], so that

b =
u1∑X

x=0 ux,1
.

On the other hand the mortality index vector k = [k1, k2, . . . , kT ] is given by

k = λ1

(
X∑
x=0

ux,1

)
ν1

where ν1 = [ν1,1, ν1,2, . . . , ν1,T ]′ is the first column of the V matrix and λ1 is the highest

eigenvalue of the matrix S. The values of mortality rates obtained with this method will

not, in general, be equal to the actual number of deaths. In Lee and Carter (1992), the

authors hence re-estimate kt in a second step, taking the values of ax and bx as given from
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the first-step SVD estimate and using actual mortality rates. The new values of k are

obtained so that, for each year, the actual death rates are equal to the implied ones. This

two-step procedure allows to take into account the population age distribution, providing

a very good fit for 13 of the 19 age groups in the authors’ sample, where more than 95%

of the variance over time is explained. For seven of these, more than 98% of the variance

is explained.

In Figure A.1 we report the performance of the Lee-Carter model in fitting the US

mortality rates. Our data come from the Human Mortality Database of the University

of Berkeley.1 In Figure A.1.1 we plot realized mortality at age 65 throughout the period

1952-2010 (red dashed line) against its Lee-Carter fitted value (blue continuous line). In

Figure A.1.2, we report the cross-sectional R2 of the estimate for all age cohorts in the

same period. The model performs very well in fitting mortality rates at all ages but those

greater than 95, where the volatility of mortality is high: for more than fifty percent of

ages, the R2 is above 95%, and for more than seventy-five percent of ages it is above 80%.

Figure A.1.3 reports the estimated unobservable common mortality index k from Equation

(A.2), which, given the ”fours hours a day” evidence, clearly features a negative trend.

The autoregressive coefficient c1 from Equation (A.2) is not statistically different form one

and we therefore restrict it to a unit value. Figure A.1.4 reports the innovations in the

unobservable mortality index

Insert Figure A.1 about here

1The data are publicly available at http://www.mortality.org/
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Appendix B. Financial asset returns and their predictors: the basic specifica-

tion of the VAR model for traditional financial investments

Consider the continuously compounded security market returns from time t to time

t + 1, rt+1 . Define µt, the conditional expected log return given information up to time t

as follows:

rt+1 = µ+ ut+1,

where ut+1 is the unexpected log return. Define the τ -period cumulative return from period

t+ 1 through period t+ τ, as

rt,t+τ =
τ∑
i=1

rt+i.

The term structure of risk is defined as the conditional variance of cumulative returns,

given the investor’s information set, scaled by the investment horizon

(B.1) Σr(τ) ≡ 1

τ
Var(rt,t+τ | Dt),

where DMkt
t ≡ σ{zMkt

τ : τ ≤ t} consists of the full histories of returns as well as predictors

that investors use in forecasting returns. Following Barberis (2000) and Campbell and

Viceira (2002), we describe asset return dynamics by means of a first-order vector autore-

gressive or VAR(1) model. We choose a VAR(1) as the inclusion of additional lags, even if

easily implemented, would reduce the precision of the estimates:

(B.2) zMkt
t = ΦMkt

0 + ΦMkt
1 zMkt

t−1 + νMkt
t ,
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where

zMkt
t =


r0t

xMkt
t

sMkt
t


is a (m× 1) vector, with r0t being the log real return on the asset used as a benchmark

to compute excess returns on all other asset classes, xMkt
t being the (n× 1) vector of log

excess returns on all other asset classes with respects to the benchmark, and sMkt
t is the

((m− n− 1)× 1) vector of returns predictors. In the VAR(1) specification, ΦMkt
0 is a

(m× 1) vector of intercepts and ΦMkt
1 is a (m×m) matrix of slopes. Finally, νMkt

t is a

(m× 1) vector of innovations in asset returns and returns’ predictors for which standard

assumptions apply, i.e.

(B.3) νMkt
t ∼ N (0,ΣMkt

ν ),

where ΣMkt
ν is the (m×m) variance-covariance matrix. Note that

ΣMkt
ν =


σ2
0 σ′0x σ′0s

σ0x Σxx Σ′xs

σ0s Σxs Σss


and the unconditional mean and variances-covariance matrix of zt, assuming that the VAR

is stationary end therefore that this moments are well-defined, can be represented as follows:
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µMkt
z =

(
Im − ΦMkt

1

)−1
ΦMkt

0

vec
(
ΣMkt
zz

)
=

(
Im2 − ΦMkt

1 ⊗ ΦMkt
1

)−1
vec
(
ΣMkt
ν

)
.

The conditional mean of the cumulative asset returns at different horizons are instead

Et(z
Mkt
t+1 + ...+ zMkt

t+τ ) =

(
τ−1∑
i=0

(τ − i)
(
ΦMkt

1

)i)
ΦMkt

0 +

(
τ∑
j=0

(
ΦMkt

1

)j)
zMkt
t ,

and their variance is:

Vart(z
Mkt
t+1 + ...+ zMkt

t+τ ) = ΣMkt
ν + (I + ΦMkt

1 )ΣMkt
ν (I + ΦMkt

1 )′ +

(I + ΦMkt
1 +

(
ΦMkt

1

)2
)ΣMkt

ν (I + ΦMkt
1 +

(
ΦMkt

1

)2
)′ + ...(B.4)

+(I + ΦMkt
1 + ...+

(
ΦMkt

1

)τ−1
)Σν(I + ΦMkt

1 + ...+
(
ΦMkt

1

)τ−1
)′.

Once the conditional moments of excess returns are available the following selector

matrix extracts for each period, τ -period conditional moments of log real returns

Mr =

 1 01×n 01×(m−n−1)

ιn×1 In×n 0n×(m−n−1)


which implies

1

τ

 Et
(
rτ0,t+1

)
Et
(
rτt+1

)
 =

1

τ
MrEt(z

Mkt
t+1 + ...+ zMkt

t+τ )
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1

τ

 Vart
(
rτ0,t+1

)
Vart

(
rτt+1

)
 =

1

τ
MrVart(z

Mkt
t+1 + ...+ zMkt

t+τ )M ′
r.

Therefore after the estimation of the VAR it is possible to derive unconditional and con-

ditional moments for returns and excess returns at all different investment horizons. These

moments deliver the dynamics of returns and the risk of different assets across investment

horizons. This information forms the input for portfolio allocation. Following Campbell

and Viceira (2005), we consider a benchmark portfolio to be obtained by attributing op-

timal weights to bond, stock and T-bills. Therefore we include in xMkt
t excess returns on

stocks and bonds, real returns on T-bills, while we include in sMkt
t three factors commonly

recognized as good predictors of these assets’ returns. In particular, the predictors are the

nominal short-term interest rate, the dividend price ratio and the yield spread between

long-term and short term bonds.

Estimation results are reported in Table B.1. Correlations among financial securities

are reported in Figure B.1.

Insert Table B.1 about here

Insert Figure B.1 about here
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A. First order condition for the replication portfolio of qkt

min
w

Vart−1

[
Rqk
t (w)− qkt

]
= min

w
Vart−1 [qkt] + Vart−1

[
Rqk
t (w)

]
− 2Covt−1

[
qkt, R

qk
t (wt−1)

]
= min

w
Vart−1

[
Rqk
t (w)

]
− 2Covt−1

[
qkt, R

qk
t (w)

]
= min

w
Vart−1 [w · xt +W0rtbt]− 2Covt−1 [qkt,w · xt +W0rtbt]

= min
w

wVart−1 [xt] w
T + w · {−2Covt−1 [xt, qkt]}

B. Conditional vs Unconditional Sharpe Ratios

SRτ,rt =
Exτ,rt
Stdτ,rt

,

Stdτ,rt (w) =

√√√√Vart,rt

[
τ∑
k=1

w· (rt+k + r0,t+kι)

]
/τ ,

Stdτ,rt (wrtb) =

√√√√Vart,rt

[
τ∑
k=1

wrtbr0,t+k

]
/τ ,

Exτ,rt = Et,rt

[
1

τ

τ∑
k=1

w · rt+k

]
+

Std2
τ,rt (w)

2τ
.

Figure B.2 reports the term structure of equity Sharpe Ratios obtained by setting the initial

condition of the state variables to their long-term expected values.

Insert Figure B.2 about here
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Appendix C. The dataset

A. Annuity prices

We estimate the change in the annuity price included in our VAR(1) model as

∆p65,t+1 = ln

(
PA
t+1,65

PA
t,65

)
,

where PA
t+1,65 is the annuity price offered on the US market for 1$ monthly life annuities

written on 65-year-old males. Consequently ∆pAt+1 is the yearly log price change of a

standardized 65 year-old annuity between time t and t + 1. Our annuity prices consist of

the sample average premiums for immediate $1 monthly life annuities for 65-year old US

males issued during the 1952-2010 period. In order to have the longest time series of prices,

we collected premia from different sources. Following Warshawsky (1988) and Friedman

and Warshawsky (1988), premia over the 1952-1967 period come from successive annual

issues of Spectator’s Handy Guide and A.M. Best’s Flitcraft Compend , whereas premia

over the 1968-1985 years come from the successive annual issues of A.M. Best’s Flitcraft

Compend. Following Koijen and Yogo (2012), Cox and Lin (2007) and Brown et al. (2002),

we compile premia for the 1986-2010 years from the semiannual issues of Annuity Shopper.

These data are integrated with those obtained from the annual issues of the Life/Health

editions of Best’s Review for the 1995-1998 period.

Given the length of the sample period and the different sources of data we use, our

sample premia refer to an unbalanced panel of companies. Although the correct approach

should be to use only rates reported by the same companies, this would substantially reduce

the number of premia available each year for computing the minimum, the maximum and
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the average annual annuity premium which, consequently, might not be reflective of the true

value of annuity price. The pricing approach adopted in the present paper is essentially

based on the assumption that price changes of annuities reflect changes of fundamental

risks priced by buyers and sellers. A side product of this estimation analysis is a direct

empirical measure of the effective price reaction to changes in aggregate mortality trends.

Clearly, empirical evidence of this connection would support the hypothesis that some form

of competition drives the prices in the market for annuities.

B. Marketed securities and the state variables

The Campbell and Viceira (2005) model is developed using quarterly data. As adapting

the mortality series to this frequency is both hardly feasible (lack of mortality data for

frequencies higher than yearly) and less meaningful (for example, some months of the year

experience higher mortality rates than others), we focus our analysis on annual data. We

download the financial data from Robert Shiller’s website2 for the postwar period 1952-2010

and, following Campbell et al. (2003) construct the financial time series as:

� Short-term ex-post real rate: return on 6-month commercial paper bought in January

and rolled over July, minus the Producer Price Index (PPI).

� Excess return on stocks: log return on the S&P 500 Stocks, from which the short-term

interest rate is subtracted.

� Excess return on bonds: returns are obtained using the loglinear approximation de-

2http://www.econ.yale.edu/˜shiller/data.htm
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scribed in Campbell et al. (1998)

rn,t+1 = Dn,tyn,t − (Dn,t − 1)yn−1,t+1,

where n is the Bond maturity, the Bond yield is Yn,t, the log Bond yield is yn,t =

(1 + Yn,t) and Dn,t is the Bond duration, calculated at time t as

Dn,t ≈
1− (1 + Yn,t)

−n

1− (1 + Yn,t)−1

with n set to 20 years and yn−1,t+1 approximated by yn,t+1.

� Excess annuity prices’ growth, as described in the previous subsection of this Ap-

pendix.

Finally the following set of state variables are included in the VAR to parametrize

the opportunity set faced by the investor

� Nominal T-bill rate: return on 6-month commercial paper bought in January and

rolled over July.

� Log dividend-price ratio: natural logarithm of the S&P 500 dividend series minus the

logarithm of the S&P 500 price series.

� Yield spread: difference between the log yield of the long Bond and the short yield

on the commercial paper.

� Aggregate longevity shocks: qkt as defined in Section III, are average differences

between predicted and fitted mortality rates for the cohorts underlying life annuities
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(in our case, 65-110).

Appendix D. Robustness of the estimation results.

A number of robustness checks have been carried out, in order to verify the stability of

the above findings. First of all we assessed the stability of the VAR estimation with respect

to the cross sectional variability of the annuity premia. Quite remarkably the aggregate

longevity risk indicator remains a significant predictor also using maximum (coeff 0.373

t-stat 2.148) and minimum (coeff 0.187 t-stat 1.697) annuity premia rather than the mean

ones.

In addition, the VAR(1) has been re-estimated over sub-samples. Truncation of the

sample before 2007 does not affect the results, proving that the above findings are not driven

by the illiquidity effects induced by the crises. Optimal allocations, the term structure of

risk and the risk-return tradeoff discussed above are robust to changes (reductions) of the

sample used for the extended VAR(1). Variability is mainly driven by interest rates levels

and stock index performances. The sample is essentially characterized by two regimes with

a transition around early 90’s. The longevity predictor is significant in every estimation

on subsamples whose truncation is posterior to 1995. Prior to this period, the estimation

indicates that the variability of annuity prices is mainly driven by shocks to short term

real and nominal interest rates that are close to being permanent. In fact high (low)

interest rate levels imply a reduction (amplification) of the impact of cash flow risk on the

price of annuities. As a consequence, diversification benefits deriving from longevity-linked

investment are more pronounced in the post-2001 period.
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Figure A.1: Lee-Carter Fitted mortality. Figure A.1.1: Fitted mortality rates at 65. Figure

A.1.2: Cross-Sectional R2 of Equation (A.1) Figure A.1.3: The unobservable mortality index kt.

Figure A.1.4: Innovations in kt.
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Figure B.1: Term Structure of correlations between financial securities included in the 

Extended VAR model
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variables is set to their long term expected value.
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rtbt xrt xbt yt (d− p)t sprt R2 adjR2

(t) (t) (t) (t) (t) (t)
rtbt+1 0.567 -0.027 -0.110 0.414 -0.008 -0.640 0.530 0.471

(3.825) (-0.662) (-1.843) (2.350) (-0.462) (-1.507)
xrt+1 0.099 0.021 -0.003 -0.935 0.107 0.271 0.087 -0.027

(0.192) (0.130) (-0.013) (-1.056) (1.963) (0.171)
xbt+1 0.830 -0.087 -0.508 0.246 -0.036 4.684 0.546 0.489

(3.649) (-1.286) (-4.315) (0.558) (-1.235) (5.132)
yt+1 -0.218 0.036 0.043 1.006 0.005 0.211 0.784 0.757

(-3.686) (2.463) (2.053) (9.821) (1.337) (1.214)
(d− p)t+1 -0.548 0.071 0.049 0.398 0.939 1.414 0.872 0.855

(-0.993) (0.402) (0.237) (0.417) (16.822) (0.787)
sprt+1 0.126 -0.030 0.009 -0.039 -0.001 0.405 0.455 0.387

(2.778) (-2.680) (0.706) (-0.532) (-0.434) (3.204)

Cross-Correlations of Residuals
rtb xr xb y (d− p) spr

rtb 3.552 0.464 0.070 -0.247 -0.501 0.285
xr - 13.507 0.170 -0.406 -0.977 0.435
xb - - 7.273 -0.637 -0.191 0.160
y - - - 1.403 0.425 -0.845

(d− p) - - - - 14.480 -0.436
spr - - - - - 1.066

VAR(1) - Matrix Φ1 - Yearly Sample 1953-2010. Original Financial Variables

Table B.1: VAR(1) coefficients with relative t-statistics and Cross-Correlations of Residuals.

Note: rtbt = ex post real T-bill rate, xrt = excess stock return, xbt = excess bond return,

(d− p)t = log dividend-price ratio, yt = nominal T-bill yield, sprt = yield spread.
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