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Forecasting crude-oil market volatility: Further evidence with jumps

Amélie Charles , Audencia Business School
Olivier Darné , LEMNA, Université de Nantes

This paper analyzes volatility models and their forecasting abilities in the presence of jumps in two crude-oil 
markets - Brent and West Texas Intermediate (WTI) - between January 6th 1992 and December 31st 2014. 
We compare a number of GARCH-type models that capture short memory as well as asymmetry (GARCH, 
GJR-GARCH and EGARCH), estimated on raw returns, to three competing approaches that deal with the pres-
ence of jumps: GARCH-type models estimated on jump-filtered returns, and two new classes of volatility 
models, called Generalized Autoregressive Score (GAS) and Markov-switching multifractal (MSM) models, 
estimated using raw returns. The forecasting performance of these volatility models is evaluated using the 
model confidence set approach, which allows us to identify a subset of models that outperform all the other 
competing models. We find that asymmetric models estimated on filtered returns provide better out-of-
sample forecasts than do GARCH-, GAS-type and MSM models estimated on raw return series for Brent and 
WTI returns.

1. Introduction

The price of crude oil is one of the most important global eco-
nomic indicators, and is monitored by policy-makers, producers,
consumers and financial-market participants. From the end of the
1990s oil prices rose steadily, reflecting the rising demand for crude
oil, particularly from developing nations. With the Great Recession
the demand for energy shrank in late 2008, with oil prices falling
from $147 in July 2008 to $32 in December 2008 and then stabi-
lizing in October 2009. From 2010 until mid-2014, world oil prices
were fairly stable at around $110. But since June 2014 prices have
more than halved, falling below $30 in January 2016. Oil prices
have thus been very volatile, changing their trajectories and behav-
ior with respect to the economic situation. Crude-oil prices may
significantly affect economic development, social stability and even
national security in a country (Wu and Zhang, 2014).

Given the volatility of crude-oil prices, financial-market partici-
pants and policy-makers would benefit from a better understanding
of how shocks affect volatility over time. The understanding of crude-
oil price volatility is important for pricing financial assets, imple-
menting hedging strategies and assessing regulatory proposals to
restrict international capital flows. For example, changes in volatil-
ity can affect the risk exposure of both the producers and industrial
consumers of oil. These changes may feed through to their respec-
tive investments in oil inventories and facilities for production and
transportation.

Autoregressive conditionally heteroscedastic (ARCH) models,
introduced by Engle (1982) and extended to generalized ARCH
(GARCH) by Bollerslev (1986), and improved GARCH-type models
were developed to capture the most important stylized facts regard-
ing crude-oil returns: heavy-tailed distributions, volatility clustering,
asymmetry and long memory volatility (Cheong, 2009; Kang et al.,
2009; Mohammadi and Su, 2010; Wei et al., 2010; Arouri et al.,
2012; Hou and Suardi, 2012; Salisu and Fasanya, 2013). However, it
is well-known that oil markets are subject to a number of drastic
shocks (called large shocks, outliers or jumps), such as the inva-
sion of Kuwait by Iraq, Operation Desert Storm, Operation Desert
Fox and the Global Financial Crisis (Larsson and Nossman, 2011; Lee
et al., 2010; Salisu and Fasanya, 2013; Charles and Darné, 2014), as
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well as OPEC announcements on reductions in production (Lin and
Tamvakis, 2010; Demirer and Kutan, 2010). These shocks may pose
difficulties for the identification and estimation of GARCH models
governing the conditional volatility of returns, and thus out-of-
sample volatility forecasts (e.g., Franses and Ghijsels, 1999; Carnero
et al., 2007, 2012; Charles, 2008).1 Harvey and Chakravarty (2008),
Harvey (2013) and Creal et al. (2013) have recently and indepen-
dently proposed a modification to the GARCH model derived from
the conditional score of the assumed distribution. The two former
called this a Dynamic Conditional Score (DCS) model and the latter a
Generalized Autoregressive Score (GAS) model. Harvey and Sucarrat
(2014) showed that these models help deal with outliers. Another
approach to deal with the outliers is the Markov-switching multi-
fractal (MSM) model of Calvet and Fisher (2001, 2004), which cap-
tures the multiscaling behavior or multifractality in financial data.
Wang et al. (2016) found that the MSM model can accommodate
the presence of outliers.2 Another way of tackling large shocks is
to detect them and estimate models on filtered data. GARCH-type
models estimated using filtered returns deliver more accurate out-
of-sample forecasts of the conditional variance of stock returns than
do GARCH models estimated on raw data (e.g., Charles, 2008; Laurent
et al., 2016).

To the best of our knowledge, no work to date has taken the pres-
ence of outliers in crude-oil markets into account when forecasting
their volatility with GARCH-type models. Cheong (2009), Kang et al.
(2009), Mohammadi and Su (2010), Wei et al. (2010), Arouri et al.
(2012), Hou and Suardi (2012) and Kang and Yoon (2013) do not
account for jumps when they model and forecast crude-oil volatil-
ity. In this paper we deal with jumps in two ways. First, we detect
jumps in crude-oil returns using a new semi-parametric test for
additive jumps in GARCH models proposed by Laurent et al. (2016),
and then apply GARCH-type models to the filtered returns.3 Second,
we follow the approach in Harvey and Chakravarty (2008), Harvey
(2013), Creal et al. (2013) and Calvet and Fisher (2001, 2004), and
apply GAS and MSM models to raw returns. Laurent et al. (2016) and
Blazsek and Villatoro (2015) are the only contributions to date that
compare GARCH and GAS models when forecasting financial returns.
Recently, Wang et al. (2016) and Lux et al. (2016) show that MSM
models generate more accurate volatility forecasts than GARCH-type
models when forecasting crude oil returns.

As discussed by Lopez (2001), it is not obvious which loss function
or criterion is the most appropriate for the evaluation of volatility
models, and different loss functions may play different roles in prac-
tical applications. Most of the work on oil forecasting uses tests to
evaluate forecast performance across various volatility models (see
Table 1), such as equality predictive ability (EPA) tests, which are
based on the pairwise comparison of forecast performances (Diebold
and Mariano, 1995; White, 2000), and the superior predictive abil-
ity (SPA) test that allows for multiple comparisons (Hansen, 2005).
In this paper, we apply the model confidence set (MCS) procedure
proposed in Hansen et al. (2011) to determine the set that consists
of a subset of equivalent models, in terms of SPA, which are supe-
rior any other set of competing models. This MCS yields a number
of models with equivalent forecasting performance, and therefore
produces more robust forecasting than that based on one model
only.

1 Harvey and Chakravarty (2008), Harvey (2013) and Harvey and Sucarrat (2014)
show that an extreme event in a GARCH model will have a large slowly-decaying effect
on future volatility predictions.

2 We thank an anonymous referee for suggesting the MSM model to deal with the
outliers.

3 Arouri et al. (2012) use GARCH-type models with structural breaks. We also detect
the presence of breaks, but do not find variance changes in the filtered return series.
Charles and Darné (2014) suggest that crude-oil markets seem to be more affected by
outliers and patches of outliers than by structural breaks.

Following on from the discussion above, this paper extends pre-
vious research in two ways. We first compare the forecasting per-
formance of a number of GARCH-type models (GARCH, GJR-GARCH
and EGARCH), which capture short memory as well as asymmetry,
estimated on both raw and jump-filtered returns, and GAS-type and
MSM models estimated on raw returns, with squared returns used as
a proxy for actual volatility. Second, a rolling forecast study is carried
out to see how well the volatility models forecast the raw returns,
using the model confidence set (MCS) approach proposed by Hansen
et al. (2011).

Overall, we find that asymmetric models estimated on filtered
returns provide better out-of-sample forecasts than do GARCH-type,
GAS-type and MSM models estimated on raw return series for Brent
and WTI returns. This finding confirms those in, for example, Carnero
et al. (2007) and Charles (2008) that the standard-GARCH mod-
els estimated on filtered returns outperform GARCH-type models
estimated on raw data, and also Laurent et al. (2016) that standard-
GARCH models estimated on filtered returns outperform other mod-
els, including GAS-type models. Taking into account volatility jumps
may therefore improve forecasting in crude-oil markets.

The remainder of this article is organized as follows. A selected lit-
erature review appears in Section 2. Section 3 then briefly describes
the GARCH-type, GAS-type and MSM models, as well as the pro-
cedure for detecting jumps. The data set is presented in Section 4,
and the empirical estimates of volatility models in Section 5.
Section 6 presents the out-of-sample forecasting design and the
results. Finally, Section 7 concludes.

2. Literature review

A number of contributions have examined the modeling and
forecasting of crude-oil spot and futures price volatility, with most
taking a GARCH-based approach (see Table 1). Despite extensive
work on identifying the most appropriate GARCH model that pro-
vides the best out-of-sample forecasting performance, no model has
consistently outperformed the others.

Kang et al. (2009) examine the forecasting power of compet-
itive GARCH-volatility models, namely GARCH, IGARCH, FIGARCH
and component-GARCH (CGARCH), in three crude-oil markets (WTI,
Brent and Dubai). They demonstrate the superiority of FIGARCH and
CGARCH over GARCH and IGARCH in modeling and forecasting the
persistence of oil-price volatility. Cheong (2009) considers different
GARCH specifications, GARCH, APGARCH, FIGARCH, FIEGARCH and
FIAPARCH, allowing for both Normal and Student-t distributions of
WTI and Brent oil returns. He finds that the simple GARCH model fits
the Brent crude-oil data better than do GARCH models that include
asymmetric and/or long memory volatility. Wei et al. (2010) extend
the empirical framework of Kang et al. (2009) and estimate both lin-
ear and nonlinear GARCH regressions, including RiskMetrics, GARCH,
IGARCH, GJR, EGARCH, APARCH, FIGARCH, FIAPARCH and HYGARCH
models. None of these models has greater predictive accuracy than
the others. Arouri et al. (2012) find that a volatility model with both
long memory and structural change (a FIGARCH model with breaks)
forecasts best when there are structural breaks. Hou and Suardi
(2012) compare a nonparametric GARCH model to an extensive class
of parametric GARCH models, as in Kang et al. (2009), in the Brent
and WTI markets and show that the out-of-sample volatility forecast
of the nonparametric GARCH model is superior to that of parametric
GARCH models.

Wang et al. (2016) compare the Binomial MSM model proposed
by Calvet and Fisher (2001, 2004) to GARCH-type models, such as
GJR, EGARCH and FIGARCH models, in the Brent and WTI mar-
kets. They find that MSM models generate more accurate volatility
forecasts than either GARCH-type models or the historical volatil-
ity model. Lux et al. (2016) compare different types of MSM models



Table 1
Selected analyzes of oil forecasting.

Article Data Sample Models Distrib. Volatility
measures

Horizon Step Out-of-sample
loss function

Tests

Kang et al. (2009) Brent, WTI, Dubai January 6th 1992 GARCH, IGARCH, CGARCH, Normal Squared 2006 1, 5, 20 days MSE, MAE DM
(spot) December 29th 2006 (D) FIGARCH returns

Cheong (2009) Brent, WTI January 4th 1993 GARCH, APARCH, FIGARCH, Normal Squared 2008 5, 20, 60 MSE, MAE
(spot) December 31st 2008 (D) FIAPARCH Student returns 100 days Log L

(rolling)
Mohammadi and Su (2010) 11 inter. January 2nd 1997 GARCH, APARCH, FIGARCH, Normal Squared 2009 1 day RMSE, MAE DM

markets (spot) October 10th 2009 (W) EGARCH returns
Wei et al. (2010) Brent, WTI January 6th 1992 Riskmetrics, GARCH, IGARCH, Normal Squared 2007–2009 1, 5, 20 days MSE, MAE, HMSE, SPA

(spot) December 31st 2009 (D) GJR, EGARCH, APARCH, returns (rolling) HMAE, QLIKE,
FIGARCH, FIAPARCH, HYGARCH R2LOG

Marzo and Zagaglia (2010) WTI January 2nd 1995 GARCH, GJR, EGARCH Normal Squared 2002–2005 1 day MSE, MAD, HMSE, DM, SPA
(futures) November 22nd 2005 (D) Student returns R2LOG, VaR based Reality check

GED functions
Arouri et al. (2012) WTI, Gasoline January 2nd 1986 Riskmetrics, GARCH, IGARCH, Normal Squared 2010–2011 1, 20, 60 days MSE, MAE,

Heating oil March 15th 2011 (D) GJR, FIGARCH, SB-GARCH, returns (recursive) MVaR
(spot and futures) SB-FIGARCH, rolling-GARCH

Hou and Suardi (2012) Brent, WTI January 3rd 1995 Riskmetrics, GARCH, IGARCH, Normal Squared 2009–2010 1 day MSE, QLIKE, SPA
(spot) July 30th 2010 (D) GJR, EGARCH, APARCH, FIGARCH, returns (recursive) R2LOG

FIAPARCH, HYGARCH, NPGARCH
Kang and Yoon (2013) WTI, Gasoline January 3rd 1995 GARCH, IGARCH, Normal Squared 2010–2011 1 day MSE, MAE DM

Heating oil July 31st 2012 (D) FIGARCH returns
(futures)

Wang et al. (2016) Brent, WTI January 4th 1993 GJR, EGARCH, FIGARCH Normal Squared Last 4141 1, 20 days MAE, MSE MCS
(spot) September 9th 2013 (D) returns days (rolling) QLIKE, R2LOG

Lux et al. (2016) WTI January 2nd 1985 GARCH, IGARCH, RiskMetric, Normal Squared 2011–2014 1, 5, 10, . . . , MSE, MAE, HMSE, SPA
(spot) 24th March 2014 (D) EGARCH, GJR-GARCH, MS-GARCH, returns 100 days HMAE, QLIKE,

APARCH, FIGARCH, HYGARCH, (rolling) R2LOG, VaR based
FIAPARCH, BMSM, LMSM function

Notes: DM = Diebold-Mariano test. SPA = Superior Predictive Ability. MCS = Model Confidence Set. SB-GARCH and SB-FIGARCH denote GARCH and FIGARCH models, respectively, with structural breaks. NPGARCH = Nonparametric
GARCH. MS-GARCH = Markov-Switching GARCH. BMSM = Binomial MSM. LMSM = LogNormal MSM. Note that Lux et al. (2016) examine a second subsample, covering the period from January 2, 1875 to December 31, 1895.



(with Binomial and LogNormal distributions) with several GARCH-
type models (GARCH, IGARCH, RiskMetric, EGARCH, GJR-GARCH,
MS-GARCH, APARCH, FIGARCH, HYGARCH, FIAPARCH) in the WTI
market. They show that the MSM model comes out as the model
that most often across forecasting horizons and subsamples cannot
be outperformed by other models.

Marzo and Zagaglia (2010) consider the forecasting properties
of symmetric (GARCH) and asymmetric (EGARCH and GJR) models
for crude-oil futures prices. Tests of predictive ability show that the
GARCH model with the GED distribution fares best for short hori-
zons from 1 to 3 days ahead, whereas for horizons from 1 week
ahead, no superior model is identified. Kang and Yoon (2013) investi-
gate the forecasting ability of volatility models (GARCH, IGARCH and
FIGARCH) with long memory in returns for three types of petroleum
futures contracts (WTI, heating oil and unleaded gasoline). Although
the ARFIMA-FIGARCH model better captures the long-memory prop-
erties of returns and volatility, the out-of-sample analysis indicates
no best model for all three types of petroleum futures contracts.

3. Methodology

3.1. GARCH-type models

In this paper we present three (linear and nonlinear) GARCH-type
models.4

3.1.1. The GARCH model
The GARCH model was developed independently by Bollerslev

(1986) and Taylor (1986), and allows the conditional variance to
depend on previous own lags.

Consider the returns series rt, defined by rt = logPt − logPt−1,
where price at time t, Pt, is described by a Normal ARMA(p, q)-
GARCH(1,1) model

rt = lt + et lt = c +
∞∑

i=1

niet−i (1)

et = stzt , zt ∼ i.i.d.N(0, 1), (2)

s2
t = y + ae2

t−1 + bs2
t−1 (3)

where ni are the coefficients of n(L) = 0−1(L)h(L) = 1+
∑∞

i=1 niLi, L is
the lag operator, and 0(L) and h(L) are the AR and MA polynomials of
order p and q respectively. The parameters should satisfy y > 0, a ≥
0 and b ≥ 0 to guarantee the positivity of the conditional variance.

The stationarity of the process (the second-order moment con-
dition) is guaranteed by the restriction a + b < 1. Ling and
McAleer (2002a, 2002b) derived the regularity conditions of a
GARCH(1,1) model as follows: E[e2

t ] = y
1−a−b < ∞ if a + b < 1, and

E[e4
t ] < ∞ if ka2 + 2ab + b2 < 1, where k is the conditional fourth

moment of zt.5 Ng and McAleer (2004) underline the importance of
checking these conditions. The sum of a and b reflects the persis-
tence of shocks to the conditional variance, meaning that the effect
of a volatility shock vanishes over time at an exponential rate.

3.1.2. The GJR-GARCH model
The GJR-GARCH model developed by Glosten et al. (1993) was

developed to capture asymmetric volatility. The specification of the

4 See Bauwens et al. (2012) for a survey of volatility models.
5 Under the assumption of a Normal distribution k = 3, so the condition becomes

3a2 + 2ab + b2 < 1. See Ling and McAleer (2002a, 2002b) for other distributions.

conditional variance of a GJR-GARCH(1,1) model is

s2
t =y + a e2

t−1 + c It−1 e2
t−1 + b s2

t−1 (4)

=y + (a + c It−1) e2
t−1 + b s2

t−1

where It−1 = 1 if et−1 < 0, and 0 otherwise. Volatility is positive if
y > 0, a,c,b ≥ 0 and a +c ≥ 0. The process is stationary if a +b +
(c/2) < 1. He and Teräsvirta (1999) and Ling and McAleer (2002b)
derived the regularity conditions for a GJR-GARCH(1,1) as follows:
E[e2

t ] < ∞ if a + b + dc < 1, and E[e4
t ] < ∞ if ka2 + 2ab + b2 +

bc+ kac+ kdc2 < 1.6 If the asymmetry coefficient c is greater than
zero then volatility rises more after large negative shocks than after
large positive shocks. The GJR-GARCH model reduces to the GARCH
model when c = 0.

3.1.3. The EGARCH model
Nelson (1991) proposes the exponential GARCH model (EGARCH),

which can also capture volatility leverage. The EGARCH(1,1) model is
defined as follows

ln
(
s2

t

)
= y + g(zt−1) + b ln

(
s2

t−1

)
g(zt) = h1 (|zt| − E(|zt|)) + h2zt (5)

where h1(|zt| − E(|zt|)) denotes the magnitude effect, and h2zt the
sign effect. If h2 < 0, negative shocks then produce greater volatility
than positive shocks of the same size. E(|zt|) depends on the assump-
tions made about the unconditional density of et. For the Normal
distribution, E(|zt|) =

√
2/p. The specification of volatility in terms

of logarithmic transformations implies that the model parameters
are not restricted to be positive. As the EGARCH model does not
impose positivity restrictions on the volatility coefficients, a suffi-
cient condition for stationarity is |b| < 1. He et al. (2002) consider
the fourth-moment structure of the EGARCH(1,1) model.7

3.2. Jump detection in GARCH models

We apply the semi-parametric procedure to detect jumps pro-
posed by Laurent et al. (2016) (LLP hereafter). Their test is similar to
the non-parametric tests for jumps in Lee and Mykland (2008) and
Andersen et al. (2007) for daily data.

LLP assume that the returns rt are described by the ARMA(p, q)-
GARCH(1,1) model of Eqs. (1) – (3). Consider the return series with
an independent jump component atIt, defined as

r∗
t = rt + atIt (6)

where r∗
t denotes the observed returns, It is a dummy variable for a

jump on day t, and at is the jump size. In Eq. (6) a jump atIt will not
affect s2

t+1 (the conditional variance of rt+1), so that we can have
non-Gaussian fat-tailed conditional distributions of r∗

t .
LLP then use the bounded innovation propagation (BIP)-ARMA

proposed by Muler et al. (2009) and the BIP-GARCH(1,1) of Muler and
Yohai (2008) to obtain robust estimates of lt and s2

t , respectively,
in Eqs. (1) and (3). These are denoted by l̃t and s̃t and are robust to

6 Under a Normal distribution and a Student-t(m) distribution, with m > 5, d = 1
2 .

See Ling and McAleer (2002a, 2002b) for other distributions.
7 The asymptotic properties, in particular the asymptotic Normality, of the quasi-

maximum likelihood estimator (QMLE) hold under mild conditions for GARCH models
(e.g., Lee and Hansen, 1994; Berkes et al., 2003; Francq and Zakoian, 2004) and for
GJR-GARCH models (Hamadeh and Zakoïan, 2011). However, the statistical proper-
ties for the QMLE of the EGARCH(1,1) parameters are not available in general, but
rather only for special cases under highly-restrictive conditions (Wintenberger, 2013;
Kyriakopoulou, 2015; Martinet and McAleer, 2016).



potential jumps atIt (i.e. they are estimated on r∗
t and not on rt). The

BIP-ARMA and BIP-GARCH(1,1) are defined as

l̃t = l +
∞∑

i=1

nis̃t−iy
MPY
kd

( J̃t−i) (7)

s̃2
t = y + a1s̃

2
t−1cdyMPY

kd

(
J̃t−1

)2
+ b1s̃

2
t−1 (8)

where ni are the coefficients from the AR(p) and MA(q) polynomi-
als defined in Eq. (1), yMPY

kd
(.) is the weight function, and cd a factor

ensuring that the conditional expectation of the weighted square
of unexpected shocks equals the conditional variance of rt in the
absence of jumps (Boudt et al., 2013).

Consider the standardized return on day t given by

J̃t =
r∗

t − l̃t

s̃t
(9)

LLP detect the presence of jumps by testing the null hypothesis
H0 : atIt = 0 against the alternative H1 : atIt �= 0. The null is rejected
if

max
T

∣∣∣ J̃t

∣∣∣ > gT,k, t = 1, . . . , T (10)

where gT,k is the suitable critical value.8 If H0 is rejected a dummy
variable is defined as follows

Ĩt = I
(∣∣∣ J̃t

∣∣∣ > k
)

(11)

where I(.) is the indicator function, with Ĩt = 1 when a jump is
detected at time t. LLP show that their test does not suffer from size
distortions irrespective of the parameter values of the GARCH model
in Monte Carlo simulations. The filtered returns r̃t are obtained as
follows

r̃t = r∗
t − (r∗

t − l̃t)Ĩt (12)

Laurent et al. (2016) extend this test for additive jumps in ARMA-
GARCH models, called BIP-ARMA-BIP-GARCH models, to ARMA-GJR-
GARCH models, called BIP-ARMA-BIP-GJR models, to account for
asymmetric effects.

3.3. GAS models

Harvey and Chakravarty (2008), Harvey (2013) and Creal et al.
(2013) separately proposed similar modified GARCH models derived
from the conditional score of the assumed distribution. The latter
called this the Generalized Autoregressive Score (GAS) model and the
two former the Dynamic Conditional Score (DCS) model, but it can
also be viewed as an unrestricted version of the GAS model.

In the GAS model the observed returns are described by Eqs. (1)
and (2), where zt is usually assumed to follow a non-Normal distri-
bution (Student-t or Skewed Student-t distribution), and the condi-
tional variance is

s2
t = y + ajt−1 + bs2

t−1 (13)

8 The critical values are defined by gT,k = −log(−log(1 − k))bT + cT , with bT =
1/

√
2 log T, and cT = (2logT)1/2 − [logp + log(logT)]/[2(2logT)1/2]. Laurent et al. (2016)

suggest setting k = 0.5.

where jt is a specified function of previous data. The critical part
of the GAS and DCS models is the choice of jt.9 In the GAS mod-
els of Creal et al. (2013), jt = St∇t, with ∇t being the score with
respect to the parameter s2

t , i.e. ∇t = ∂ log f (et|s2
t , Yt−1; h)/∂s2

t ,
where f (et|s2

t , Yt−1; h) represents the density of et and h is a vector
of unknown parameters describing the joint-distribution function of
the data, and St is a time-dependent scaling matrix. Creal et al. (2013)
recommend using St = −Et−1(∇t∇t

′).
In the DCS models of Harvey and Chakravarty (2008) and Harvey

(2013), jt = uts
2
t , where ut is proportional to the (standardized)

score of the conditional distribution at time t. This variable is a
martingale difference by construction.10 ut is a function that can
reduce the weight on and bound the effect of past shocks. When
zt ∼ i.i.d.N(0, 1), ut = z2

t , and the model reduces to the GARCH(1,1)
model in which the impact of the shock is unbounded. However,
for non-Normal distributions, large shocks are downweighted and
have a smaller effect on future volatilities than in GARCH models.
For example, when et has a conditional Student-t distribution with m

degrees of freedom ut is defined as

ut =
(m + 1)e2

t

(m − 2)s2
t + e2

t

− 1, −1 ≤ ut ≤ m, m > 2 (14)

Harvey and Chakravarty (2008) and Harvey (2013) call this model
a Beta-t-GARCH model because ut is a linear function of a variable
with a Beta distribution (ut + 1/m + 1).11 Harvey and Chakravarty
(2008), Harvey (2013), Harvey and Sucarrat (2014) and Laurent et al.
(2016) show that, for a DCS model with a Normal distribution (and
also for a GARCH model), a jump has a very large effect on ut

and therefore a large and slowly-decaying effect on future volatil-
ity predictions. However, with a Student-t distribution the effect of
a jump is bounded and therefore has only a small impact. Large
shocks are downweighted, since e2

t appears both in the numera-
tor and the denominator of Eq. (14). A number of extensions have
been suggested, including Skewed-Student errors. Here we follow
the approach of Harvey and Chakravarty (2008) and Harvey (2013).

Harvey and Chakravarty (2008) and Harvey (2013) also consider
an EGARCH-type version of the GAS model (Exponential GAS or
EGAS, Beta-t-EGARCH). This model is extended to account for the
leverage effect as follows,

logs2
t = y + aut−1s

2
t−1 + cIt−1 + b logs2

t−1

where c is the asymmetric leverage coefficient describing volatility
leverage, and It = sgn(−zt)(y(z2

t ) + 1). In the remainder of the paper
we call the DCS models of Harvey and Chakravarty (2008) and Harvey
(2013) GAS models, and the Beta-t-EGARCH an EGAS model.

3.4. MSM models

The Markov-switching multifractal (MSM models) have been
introduced by Calvet and Fisher (2001, 2004) and Lux (2008), and
are characterized by a multiplicative rather than additive structure of
the volatility process. In the MSM framework instantaneous volatility

9 See Gao and Zhou (2016) for the difference between GAS and DCS models.
10 Note that in the GARCH(1,1) model, Eqs. (2) and (3), can be written as: s2

t =
y +aut−1 + (a +b)s2

t−1, where ut = (e2
t /s

2
t ) − 1 = z2

t − 1 is a martingale difference.
Harvey and Chakravarty (2008) and Harvey (2013) therefore replace ut in the condi-
tional variance by another martingale difference that is proportional to the score of
the conditional distribution of et .
11 The definition can be modified to deal with m < 2 by measuring volatility in terms

of a scale parameter (Harvey and Chakravarty, 2008; Harvey, 2013).
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s2
t is modeled as a product of k volatility components or multipliers

(M1
t , M2

t , . . . , Mk
t ) and a positive scale factor s , given by

s2
t = s2

k∏
i=1

Mi
t (15)

where the multipliers are assumed to be persistent, independent of
each other at any time, and satisfy Mi

t ≥ 0 and E[Mi
t] = 1. Follow-

ing the basic hierarchical principle of the multifractal approach, each
multiplier Mi

t is renewed at time t with probability ci depending on
its rank within the hierarchy of multipliers, and remains unchanged
with probability 1 − ci. Convergence of the discrete-time MSM to a
Poisson process in the continuous-time limit requires to formalize
transition probabilities according to

ci = 1 − (1 − ck)(bi−k)

with ck and b parameters to be estimated (Calvet and Fisher, 2001).
Here we are not interested in the continuous-time process, and
therefore, we follow Lux (2008) and use pre-specified parameters
ck = 0.5 and b = 2, defining the transition probabilities by ci =
2i−k. The choice of parameters for ck and b can be motivated by
the fact that the in-sample fit and out-of-sample forecasting perfor-
mance have been found to be almost invariant compared to other
(estimated) values (Calvet and Fisher, 2004; Lux, 2008). The MSM
model is a Markov-switching process with 2k states.

The specification of the MSM model necessitates to specify the
distribution of volatility components. As used in Wang et al. (2016)
we assume that the random multipliers Mi

t follow a Binomial dis-
tribution taking the values m0 and 2 − m0 (1 ≤ m0 < 2), with a
probability of 0.5, guaranteeing that E[Mi

t] = 1 (Calvet and Fisher,
2004).12 This model is called the BMSM model. The maximum likeli-
hood approach is employed for estimating only two parameters, the

12 Another distribution assumption such as LogNormal, suggested by Lux (2008),
can be used as well. However, to compare our results with those obtained by Wang
et al. (2016) we focus only on the Binomial distribution. The comparison with another
distribution will be examined in further research.

Binomial parameter m0 and the scale factor s , although the number
of states could be arbitrarily large (for large k). While, in principle, the
ML approach for BMSM is the same as with any Markov-switching
model, the high numbers of states (2k distinct states) makes it
computationally demanding for practical research, it is, therefore,
applicable only to one-digit choices for k. As in Lux et al. (2016) and
Ben Nasr et al. (2016) we set k = 8 volatility components for the
likelihood approach for estimation of the parameters (m0,s).

4. Data and summary statistics

The data we use here consists of the daily closing spot prices on
two crude-oil markets: the US West Texas Intermediate (WTI) and
UK Brent markets. The data comes from Thomson Financial Datas-
tream and is given in US Dollars per barrel. The data covers January
6th 1992 to December 31st 2014, producing 5998 observations. The
WTI and Brent crude-oil returns are calculated as the first differ-
ences in the logs of the spot prices (rt). Following Kang et al. (2009),
Wei et al. (2010) and Hou and Suardi (2012), daily actual volatil-
ity (variance) is assessed by daily squared returns (r2

t ). The graphical
representations of prices, returns and volatility for the two series
appear in Figs. 1–3, and reveal the presence of jumps.13

Table 2 presents the summary statistics for WTI and Brent crude-
oil returns. These have approximately equal mean returns of about
0.04% per day, with Brent returns being marginally smaller than WTI
returns. The WTI returns are a little more volatile, as measured by
their standard deviation (2.202 versus 2.059). All returns are highly
non-Normal, and show evidence of significant positive skewness and
excess kurtosis, as might be expected from daily returns. All series
are leptokurtic (i.e., fat-tailed) and thus the variance in crude-oil
prices principally reflects infrequent but extreme deviations. In addi-
tion, both returns have positive skewness, signifying that the series
have a longer right tail (extreme gains) than left tail (extreme losses).
The Lagrange Multiplier test for the presence of an ARCH effect
clearly indicates that crude-oil prices exhibit strong conditional het-
eroscedasticity, which is common for financial data. As such, there

13 See Charles and Darné (2014) for economic explanations of jumps in crude-oil
markets.
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Fig. 3. Brent and WTI volatility - 1992–2014.

are quiet periods with small price changes and turbulent periods
with large oscillations.

The jump-filtered returns (r̃t) also exhibit excess skewness
(except for the Brent returns), excess kurtosis and conditional het-
eroscedasticity, although the excess kurtosis decreases dramatically.
This is consistent with Carnero et al. (2001) and Charles and Darné
(2005), who show that jumps may cause significant skewness.

5. Estimation results

The descriptive statistics suggest that an appropriate model
of crude-oil return volatility should account for its time-varying
nature and the non-Normality of oil returns. We hence estimate
the various volatility models that were sketched out in Section 3
using the Normal, Student-t and Skewed Student-t distributions

(Bollerslev, 1987; Lambert and Laurent, 2001) for GARCH- and GAS-
type models14 as well as the BMSM models on the period from
January 6th 1992 to December 31st 2007. The different GARCH-type
models (GARCH, GJR and EGARCH) are applied to both raw returns
and filtered returns, and the GAS-type and BMSM models are applied
to raw returns. Note that the filtered returns from the BIP-ARMA-
BIP-GARCH models are used to estimate the GARCH models, whereas

14 Note that estimating GARCH models with heavy-tailed distributions may lead to
inconsistent (non-Gaussian) maximum-likelihood (ML) estimate of model parame-
ters, while the Gaussian ML estimator may be consistent even if the true distribution
is far from being Gaussian, although this gain in robustness comes with a loss of effi-
ciency (Fan et al., 2014). Some GARCH-type models with Student-t distribution for
crude oil volatility appear in Cheong (2009), Marzo and Zagaglia (2010), and Hou and
Suardi (2012), among others, whereas Salisu and Fasanya (2013) employ a Skewed
Student-t distribution.



Table 2
Summary statistics of crude-oil markets.

Series Mean (%) St. dev. (%) Min. Max. Skewness Ex. kurtosis LM(10)

Non-adjusted data
Brent 0.0386 2.059 −12.7 14.5 0.068* 3.49* 426.6*
WTI 0.0395 2.202 −13.3 25.8 0.304* 7.09* 796.1*

Adjusted data
Brent 0.0358 2.006 −9.26 10.4 −0.003 2.09* 476.0*
WTI 0.0331 2.094 −10.1 10.6 −0.117* 2.00* 651.5*

Notes: LM(10) is the ARCH LM test with lag 10.
∗ Denotes significance at the 5% level.

the filtered returns from the BIP-ARMA-BIP-GJR models are used
to estimate the asymmetric GARCH models (GJR and EGARCH).15

The parameters of the volatility models are estimated by the quasi-
maximum likelihood (QML) method of Bollerslev and Wooldridge
(1992) – producing robust standard errors – and the quasi-likelihood
function is maximized using the quasi-Newton method of Broyden,
Fletcher, Goldfarb and Shanno (BFGS).16 The estimation results for
the Brent and WTI crude-oil price returns appear in Tables 3 and 4,
respectively, for GARCH and GAS models. The likelihood estimation
of BMSM models is conducted for k = 8, fixed from the outset. The
estimates of the Binomial parameter, m0, are 1.254 and 1.241, and
the scale factor parameter, s , are 2.099 and 2.105, for the Brent and
WTI returns, respectively.

The comparison between the volatility models is effected via
various in-sample criteria: Log-Likelihood (LL), Akaike (AIC) and
Hannan-Quinn (HQ). For each table, the best model appears in bold,
showing the highest value of the LL and the lowest values of the AIC
and HQ. The residual tests are also shown to see whether the chosen
volatility model is the most appropriate.

Even though the in-sample criteria for the Brent and WTI mar-
kets are very similar to each other under the different GARCH-type
models estimated on the raw returns, their volatility is best mod-
eled by a GJR-GARCH process with Student-t and Skewed Student-t
distributions, respectively (Tables 3 and 4), suggesting asymmetry in
these crude oil markets. Modeling crude-oil returns via (E)GAS mod-
els does not improve the in-sample criteria, except very slightly for
the WTI return series with an EGAS model with a Skewed Student-t
distribution. Last, the Brent and WTI data are better fitted when using
filtered returns. Tables 3 and 4 show that the best specification for
the Brent and WTI data is the GJR-GARCH model with a Student-t and
Skewed Student-t distribution, respectively. Note that Brent returns
seem to exhibit more asymmetry than WTI returns (c = 0.024 and
0.014, respectively) and a similar high degree of persistence (0.997).

15 We found the same number of jumps in the jump-detection procedure based on
the BIP-ARMA-BIP-GARCH and BIP-ARMA-BIP-GJR models, except for one jump.
16 To estimate and forecast these returns series, we use G@RCH 7.0 for Ox, a package

dedicated to the estimation and forecasting of GARCH- and GAS-type models. Note
that we changed the initial values of the parameters due to convergence problems in
the EGARCH model with the Normal distribution for Brent returns. The Berndt-Hall-
Hall-Hausman (BHHH) algorithm is another way of optimizing the likelihood function.
The BFGS and BHHH algorithms are similar regarding the first derivatives of the like-
lihood function with respect to the numerically-calculated parameters, but differ in
their construction of the Hessian matrix of second derivatives. Brooks et al. (2001,
2003), review some software packages that estimate GARCH-type models and under-
line that they produce different results (see also Zivot, 2009). We applied the BHHH
algorithm with the Marquardt correction (which modifies the BHHH algorithm by
adding a correction matrix to the Hessian approximation) available in EViews 9 to
estimate the asymmetric GARCH models in order to obtain robust estimated parame-
ters, and found similar results with the BFGS algorithm. The results are available in the
Online Appendix. We thank an anonymous referee for bringing this important point
to our attention. The ML estimation and forecasting of BMSM models is done on Gauss
17. We thank Thomas Lux and Mawuli Segnon for sharing their Gauss codes.

6. Out-of-sample

As indicated in the estimation and diagnostic evaluations, the
GJR-GARCH model appears to fit both the Brent and WTI returns
series well. However, this does not guarantee that it will perform
better in actual forecasting tests. We carry out a rolling out-of-
sample forecast for a one-day horizon and assess model forecast
performance by out-of-sample one-step ahead prediction errors. The
models are estimated using the first 16-year period, from January
6th 1992 to December 31st 2007 (T = 4171 observations), and the
out-of-sample forecasts of the conditional variance are calculated
for January 2nd 2008 to December 31st 2014 (H = 1826 obser-
vations). This out-of-sample period includes a period of jumps at
the beginning of 2009 in the WTI due to US announcements on
crude inventories and storage capacity (Charles and Darné, 2014).
The models are re-estimated every 50 days, from a rolling window of
4171 observations. As such, the estimation sample size remains fixed
and the forecasts do not overlap. One-day out-of-sample volatil-
ity forecasts ŝ2

T+k, with k = 1, . . . , H, are obtained for the forecast
horizon, and compared to the raw returns r2

T+k. The use of squared
returns r2

T+k as a proxy for actual volatility is an established practice
in the literature (see, e.g., Kang et al., 2009; Wei et al., 2010; Hou
and Suardi, 2012). This is an unbiased proxy, although noisy (Lopez,
2001).

Patton (2011) shows that there are only two loss functions that
yield optimal forecasts when using squared returns as a volatil-
ity proxy: the mean squared error (MSE) and the loss implied by
a Gaussian likelihood (QLIKE). We thus assess volatility forecast
performance by the MSE17

MSE =
1
H

H∑
t=1

(
s2

t − ŝ2
t

)2

In the presence of jumps, Hansen and Lunde (2005) and
Preminger and Franck (2007) recommend the use of forecast-
performance evaluation criteria that are less sensitive to jumps. We
hence consider the Mean Absolute Deviation (MAD), defined as

MAD =
1
H

H∑
t=1

∣∣∣s2
t − ŝ2

t

∣∣∣

Obviously, the simple comparison of MSE- and MAD-values
does not take into account the sample uncertainty underlying the
observed forecast differences. We therefore also apply the model
confidence set (MCS) procedure proposed by Hansen et al. (2011) to
determine the set, M∗, that consists of a subset of equivalent mod-
els in terms of superior predictive ability (SPA: Hansen and Lunde,
2005) over the other competing collections of models, M0. The MCS
procedure yields a model confidence set, M̂∗, which is a set of

17 We have also used the QLIKE and obtain similar results.



Table 3
Estimates of volatility models - Brent (1992–2007).

Parameters In-sample criteria Residual tests

Distribn. y a b c h1 h2 LL AIC HQ Q(10) Q2(10) LM(10)

Raw returns
GARCH Gauss 0.028

(2.20)
0.047
(4.73)

0.948
(87.1)

−8767.6 4.206 4.208 14.3 8.79 0.86

Student 0.026
(2.52)

0.041
(5.80)

0.956
(121.5)

−8691.9 4.170 4.173 14.3 12.2 1.16

Skew-Stud.a 0.025
(2.49)

0.041
(5.83)

0.955
(124.0)

EGARCH Gauss 1.962
(6.90)

0.992
258.6

0.103
(4.96)

−0.015
(−1.57)

Studentc 1.483
(8.86)

0.993
357.2

0.088
(6.20)

−0.019
(−2.37)

−8695.4 4.172 4.176 16.1 25.1* 1.82

Skew-Stud.a 0.897
(2.02)

0.994
370.8

0.086
(6.25)

−0.019
(−2.49)

GJR-GARCH Gauss 0.025
(2.02)

0.033
(2.91)

0.951
(85.4)

0.021
(1.89)

−8764.2 4.205 4.208 14.2 9.53 0.92

Student 0.023
(2.29)

0.026
(3.24)

0.958
(127.8)

0.024
(2.44)

−8688.7 4.169 4.172 14.2 13.8 1.29

Skew-Stud.a 0.021
(2.26)

0.025
(3.20)

0.959
(131.5)

0.025
(2.56)

GAS Gauss 0.028
(2.20)

0.047
(4.73)

0.995
(291.2)

−8767.6 4.206 4.208 14.3 8.84 0.86

Student 0.023
(2.38)

0.054
(6.62)

0.996
(367.0)

−8695.9 4.172 4.175 15.0 19.8* 1.83∗∗

Skew-Stud. 0.022
(2.34)

0.055
(6.68)

0.996
(375.7)

−8694.7 4.172 4.175 14.9 19.9* 1.83∗∗

EGAS Gauss 0.014
(2.38)

0.040
(5.09)

0.990
(248.1)

−8767.4 4.206 4.208 13.9 8.56 0.83

Student 0.011
(2.64)

0.054
(6.76)

0.992
(329.3)

−8693.7 4.171 4.174 14.8 17.0* 1.59

Skew-Stud. 0.011
(2.59)

0.053
(6.82)

0.992
(338.4)

−8692.6 4.171 4.174 14.7 17.1* 1.60

Filtered returns
GARCH Gauss 0.022

(2.22)
0.039
(6.10)

0.956
(126.4)

−8698.6 4.173 4.175 13.8 6.47 0.62

Student 0.022
(2.37)

0.041
(6.52)

0.955
(135.4)

−8653.5 4.152 4.155 13.8 5.95 0.58

Skew-Stud. 0.021
(2.32)

0.041
(6.57)

0.955
(138.7)

−8652.3 4.152 4.155 13.8 6.09 0.59

EGARCH Gauss 1.851
(7.17)

0.994
328.8

0.082
(5.86)

−0.016
(−2.05)

−8707.6 4.178 4.180 15.2 15.2 1.46

Student 1.477
(8.07)

0.994
384.7

0.083
(6.51)

−0.019
(−2.47)

−8657.6 4.154 4.157 15.3 15.9 1.50

Skew-Stud. 0.746
(1.51)

0.994
399.7

0.082
(6.60)

−0.020
(−2.61)

−8656.1 4.154 4.158 15.3 16.6 1.59

GJR-GARCH Gauss 0.019
(2.00)

0.026
(3.21)

0.960
(124.3)

0.020
(2.23)

−8694.9 4.172 4.174 13.6 7.84 0.75

Student 0.019
(2.09)

0.026
(3.36)

0.959
(139.2)

0.024
(2.55)

-8650.1 4.151 4.154 13.6 7.75 0.75

Skew-Stud.b 0.017
(2.05)

0.025
(3.33)

0.960
(144.1)

0.025
(2.69)

Notes: LL is the log-likelihood value, AIC and HQ correspond to the Akaike and Hannan-Quinn criteria, respectively. Q(10) and Q2(10) are respectively the Box-Pierce statistics
with lag 10 of the standardized and squared standardized residuals. These are asymptotically distributed as w2(k), where k is the lag length. LM(10) is the ARCH LM test with lag
10. This is distributed as w2(q), where q is the lag length. The robust t-ratios appear in parentheses. The best in-sample criteria appear in bold.

a The parameter of asymmetry in the Skewed-Student distribution is not significant at the 10% level.
b The condition for the existence of the fourth moment of the GARCH model is not respected (Ling and McAleer 2002a).
c We have changed the initial values of the parameters due to convergence problems.
∗ Indicates that the null hypothesis is rejected at the 5% level.

∗∗ Indicates that the null hypothesis is rejected at the 10% level.

models constructed to contain the best models with a given level of
confidence. This MCS produces a number of models with the same
forecasting performance, and therefore more robust forecasting than
that using only one model. The t -statistic is defined as

TmaxM = max
i∈M

ti with ti =
d̄i√

v̂ar(d̄i)
(16)

where v̂ar(d̄i) denotes the estimate of var(d̄i), d̄i = m−1∑
j∈Md̄ij, and

d̄ij = n−1 ∑n
t=1 dij,t , with dij,t = Li,t − Lj,t for all i, j ∈ M0, and Li,t is a

loss function (here MSE or MAD).18 The t -statistic is associated with
the null hypothesis of equal predictive ability (EPA: Hansen, 2005)
H0,M : E(d̄i) = 0 for all i ∈ M, where M ⊂ M0. The MCS is a sequen-
tial testing procedure, eliminating at each step the worst model from
M, until the null hypothesis of EPA is accepted for all the models. If
the null of EPA is rejected for M = M0, the worst-performing model

18 d̄ij measures the relative sample loss between the i-th and j-th models, while d̄i is
the sample loss of the i-th model relative to the average across the models in M.

is excluded from the set M.19 The iterative procedure stops when
the null hypothesis of EPA of the models still included in the set can-
not be rejected. If H0,M is accepted at level a then the MCS is the set
M̂∗

1−a .20

The RMSE and MAD values, as well as results of the MCS test
(p-values), appear in Tables 5 and 6 for the Brent and WTI returns
series, respectively. The initial model space M0 consists of 19 and
20 models for the Brent and WTI returns series, respectively: these
are the volatility models that satisfy the regularity, significance and
non-negativity conditions. We set the confidence level for the MCS
to a = 0.10, 0.50 and 0.90.

For the Brent returns, the RMSE and MAD values are close for
each model, but the GJR-GARCH models estimated from the filtered
series display the lowest values. All the volatility models appear in

19 The choice of the worst model to be eliminated uses the following elimination
rule: emaxM = arg max

i∈M
ti .

20 The MCS p-values are calculated using bootstrap implementation with 10,000
resamples (Hansen et al., 2011). The MCS test is carried out using the Ox software
package MULCOM of Hansen and Lunde (2007).



Table 4
Estimates of volatility models - WTI (1992–2007).

Parameters In-sample criteria Residual tests

Distribn. y a b c h1 h2 LL AIC HQ Q(10) Q2(10) LM(10)

Raw returns
GARCH Gauss 0.024

(2.12)
0.042
(4.29)

0.954
(92.1)

−8820.3 4.231 4.233 14.2 20.7* 2.06*

Student 0.021
(2.38)

0.031
(5.34)

0.965
(143.9)

−8747.6 4.197 4.200 14.8 27.7* 2.72*

Skew-Stud. 0.020
(2.37)

0.031
(5.47)

0.965
(149.3)

−8745.3 4.196 4.200 14.9 27.7* 2.71*

EGARCH Gauss 1.983
(6.86)

0.993
316.6

0.091
(5.08)

−0.014
(−1.37)

Student 1.508
(8.92)

0.994
418.1

0.074
(5.89)

−0.014
(−1.87)

−8745.3 4.196 4.199 16.5 37.5* 6.09*

Skew-Stud. 0.601
(1.21)

0.995
438.3

0.074
(6.11)

−0.015
(−2.09)

−8742.6 4.195 4.199 16.6 37.6* 6.09*

GJR-GARCH Gauss 0.021
(1.96)

0.030
(2.39)

0.957
(91.4)

0.018
(1.51)

Student 0.019
(2.25)

0.020
(3.06)

0.967
(159.6)

0.019
(2.10)

−8745.4 4.196 4.200 15.5 27.7* 2.72*

Skew-Stud. 0.018
(2.23)

0.019
(3.01)

0.967
(167.2)

0.020
(2.34)

−8742.6 4.195 4.199 15.6 27.7* 2.72*

GAS Gauss 0.024
(2.12)

0.042
(4.29)

0.996
(330.5)

−8820.3 4.231 4.233 14.2 20.7* 2.06*

Student 0.019
(2.22)

0.046
(6.46)

0.996
(417.9)

−8745.9 4.196 4.199 15.5 36.2* 3.49*

Skew-Stud. 0.018
(2.17)

0.046
(6.57)

0.997
(425.9)

−8743.5 4.195 4.199 15.6 36.4* 3.50*

EGAS Gauss 0.011
(2.45)

0.033
(5.10)

0.992
(324.2)

−8822.0 4.232 4.234 14.3 20.7* 2.06*

Student 0.010
(2.54)

0.045
(6.64)

0.993
(382.8)

−8744.3 4.195 4.198 15.3 32.7* 3.17*

Skew-Stud. 0.009
(2.50)

0.045
(6.78)

0.994
(395.0)

−8742.0 4.195 4.198 15.3 33.0* 3.19*

Filtered returns
GARCH Gauss 0.018

(2.16)
0.035
(5.72)

0.962
(141.1)

−8740.3 4.193 4.195 12.3 13.6∗∗ 1.36

Student 0.017
(2.16)

0.032
(5.82)

0.964
(153.1)

−8703.4 4.176 4.178 12.5 15.1∗∗ 1.49

Skew-Stud. 0.016
(2.13)

0.032
(5.96)

0.965
(158.6)

−8701.1 4.175 4.178 12.5 15.1∗∗ 1.50

EGARCH Gauss 1.793
(8.56)

0.993
386.8

0.076
(6.25)

−0.009
(−1.28)

Student 1.502
(8.89)

0.995
(427.6)

0.073
5.96

−0.012
(−1.67)

−8702.9 4.176 4.179 13.6 19.1* 2.79*

Skew-Stud. 0.597
(1.19)

0.995
(444.4)

0.072
6.17

−0.013
(−1.84)

−8700.4 4.175 4.179 13.7 19.0* 2.78*

GJR-GARCH Gauss 0.017
(2.02)

0.027
(3.47)

0.964
(143.2)

0.012
(1.38)

Student 0.024
(2.01)

0.024
(3.65)

0.966
(161.8)

0.014
(1.72)

−8701.9 4.175 4.179 12.8 14.7∗∗ 1.45

Skew-Stud. 0.015
(1.98)

0.023
(3.67)

0.966
(168.8)

0.016
(1.90)

-8699.3 4.175 4.178 12.8 14.7∗∗ 1.45

Notes: a The parameter of asymmetry in the Skewed-Student distribution is not significant at the 10% level. b The condition for the existence of the fourth moment of the GARCH
model is not respected (Ling and McAleer, 2001). LL is the log-likelihood value, AIC and HQ correspond to the Akaike and Hannan-Quinn criteria, respectively. Q(10) and Q2(10) are
respectively the Box-Pierce statistics with lag 10 of the standardized and squared standardized residuals. These are asymptotically distributed as w2(k), where k is the lag length.
LM(10) is the ARCH LM test with lag 10. This is distributed as w2(q), where q is the lag length. The robust t-ratios appear in parentheses. The best in-sample criteria appear in bold.

∗ Indicates that the null hypothesis is rejected at the 5% level.
∗∗ Indicates that the null hypothesis is rejected at the 10% level.

M̂∗
10% with the MSE loss function, and only one volatility model, the

EGARCH model with a Student-t distribution estimated on the fil-
tered return series, is in M̂∗

50%. Using the MAD loss function, only the

GARCH-type models estimated on the filtered returns appear in the
M̂∗

10%, and especially the EGARCH model with a Normal distribution
is in the M̂∗

90%. These results suggest that estimating GARCH-type

Table 5
Out-of-sample results - Brent (2008–2014).

Model GARCH GARCH GJR GJR EGARCH GAS GAS GAS EGAS EGAS EGAS
Distribn. Gauss Student Gauss Student Student Gauss Student Skew-Stud. Gauss Student Skew-Stud.

RMSE 0.0980 0.0980 0.0976 0.0975 0.0975 0.0980 0.0981 0.0981 0.0983 0.0980 0.0980
MCS-MSE 0.2459* 0.2459* 0.3773* 0.3773* 0.3773* 0.2459* 0.2459* 0.2459* 0.2423* 0.2423* 0.2364*
MAD 0.0414 0.0414 0.0412 0.0412 0.0411 0.0414 0.0415 0.0415 0.0409 0.0409 0.0409
MCS-MAD 0.0008 0.00080 0.0008 0.0006 0.0000 0.0016 0.0000 0.0006 0.0244 0.0117 0.0000

Model GARCHm GARCHm GARCHm GJRm GJRm EGARCHm EGARCHm EGARCHm BMSM
Distribn. Gauss Student Skew-Stud. Gauss Student Gauss Student Skew-Stud.

RMSE 0.0976 0.0976 0.0976 0.0971 0.0971 0.0975 0.0973 0.0973 0.1003
MCS-MSE 0.2459* 0.2459* 0.2459* 0.3773* 1.000∗∗∗ 0.2669* 0.3773* 0.3773* 0.1093*
MAD 0.0402 0.0403 0.0403 0.0402 0.0403 0.0402 0.0402 0.0403 0.0408
MCS-MAD 0.8045∗∗ 0.1589* 0.6213∗∗ 0.8045∗∗ 0.3025* 1.000∗∗∗ 0.1589* 0.3474* 0.0244

Notes: XXXm denotes the GARCH-type model estimated on filtered data. MCS-MSE and MCS-MAD denote the p-value of the statistic TmaxM of Hansen et al. (2011) based on the
MSE and MAD loss functions respectively. The lowest RMSE and MAD values appear in bold.

∗ Means that the forecasts are in M̂∗
10%.

∗∗ Means that the forecasts are in M̂∗
50%.

∗∗∗ Means that the forecasts are in M̂∗
90%.



Table 6
Out-of-sample results - WTI (2008–2014).

Model GARCH GARCH GARCH GJR GJR EGARCH EGARCH GAS GAS GAS EGAS EGAS EGAS
Distribn. Gauss Student Skew-Stud. Student Skew-Stud. Student Skew-Stud. Gauss Student Skew-Stud. Gauss Student Skew-Stud.

RMSE 0.2037 0.2042 0.2042 0.2023 0.2024 0.2020 0.2020 0.2037 0.2034 0.2034 0.2040 0.2036 0.2035
MCS-MSE 0.3256* 0.3256* 0.2398* 0.9384∗∗∗ 0.1.000∗∗∗ 0.9318∗∗∗ 0.9981∗∗∗ 0.4289* 0.3256* 0.3256* 0.3256* 0.3256* 0.3256*
MAD 0.0616 0.0616 0.0616 0.0610 0.0608 0.0616 0.0602 0.0603 0.0616 0.0617 0.0601 0.0602 0.0603
MCS-MAD 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 0.000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000

Model GARCHm GARCHm GARCHm GJRm GJRm EGARCHm EGARCHm BMSM
Distribn. Gauss Student Skew-Stud. Student Skew-Stud. Student Skew-Stud.

RMSE 0.2055 0.2055 0.2055 0.2045 0.2044 0.2042 0.2041 0.2109
MCS-MSE 0.0664 0.0583 0.0258 0.2398* 0.3256* 0.0933 0.1428* 0.0167
MAD 0.0579 0.0580 0.0580 0.0579 0.0579 0.0580 0.0581 0.0584
MCS-MAD 0.5012∗∗ 0.2575* 0.0756 1.000∗∗∗ 0.6812∗∗ 0.8279∗∗ 0.6620∗∗ 0.0583

Notes: XXXm denotes the GARCH-type model estimated on filtered data. MCS-MSE and MCS-MAD denote the p-value of the statistic TmaxM of Hansen et al. (2011) based on the
MSE and MAD loss functions respectively. The lowest RMSE and MAD values appear in bold.

∗ Means that the forecasts are in M̂∗
10%.

∗∗ Means that the forecasts are in M̂∗
50%.

∗∗∗ Means that the forecasts are in M̂∗
90%.

models on filtered data seems to be appropriate for forecasting Brent
returns.

For the WTI returns, the EGARCH models with Student-t and
Skewed-Student-t distributions estimated on raw data have the
best RMSE values. This result is confirmed by the MCS test, where
these two EGARCH models and the GJR-GARCH models are in the
M̂∗

50% whereas most of the other models are in the M̂∗
10%, suggest-

ing that these models are equivalent in terms of predictive ability.
However, when we use the MAD as the loss function, the models
estimated on filtered data are in the M̂∗

10%, and only five models are
in the M̂∗

50%, namely a GARCH model with a Normal distribution and
the GJR-GARCH and EGARCH models with Student-t and Skewed-
Student-t distributions. Among these three, the GJR-GARCH model
with a Student-t seems to have the best forecast accuracy for the
WTI returns. All the other volatility models, i.e. GARCH-type, GAS-
type and BMSM models estimated on raw return data, are excluded
from the MCSs, suggesting that they forecast significantly less accu-
rately than GARCH-type models estimated on filtered data. This can
be explained by the presence of a number of jumps at the beginning
of 2009 due to US announcements regarding crude inventories and
storage capacity, which affected the MSE measure as a criterion to
evaluate forecast performance (Hansen and Lunde, 2005; Preminger
and Franck, 2007). Note that the BMSM model gives the lowest MAD
values than the other volatility models estimated on raw return data.
This result is in line with those obtained by Wang et al. (2016) and
Lux et al. (2016).21

Overall, we find that asymmetric models estimated on filtered
returns provide the best forecasts for both Brent and WTI returns.
This result is in line with Franses and Ghijsels (1999), Carnero et al.
(2007) and Charles (2008) that the standard-GARCH models esti-
mated on filtered returns outperform GARCH-type models estimated
on raw data, and also Laurent et al. (2016) that standard-GARCH
models estimated on filtered returns outperform other models,
including GAS-type models.

7. Conclusion

This paper has analyzed volatility models and their forecasting
performance under the presence of jumps in two crude-oil markets -
Brent and West Texas Intermediate (WTI) - between January 6th 1992

21 We have also compared the volatility models estimated only on the raw returns
and found that GAS-type and BMSM models are interesting alternative volatility mod-
els to GARCH-type models for forecasting Brent and WTI returns based. The results are
available upon request.

and December 31st 2014. We first compare a number of GARCH-type
models that capture short memory as well as asymmetry (GARCH,
GJR-GARCH and EGARCH), estimated on raw returns, to three com-
peting approaches that deal with the presence of jumps: GARCH-type
models estimated from jump-filtered returns, and two new classes
of volatility models, called Generalized Autoregressive Score (GAS)
and Markov-switching multifractal (MSM) models, estimated from
raw returns. The forecasting performance of the volatility models is
evaluated via the RMSE and MAD criteria, as well as the model con-
fidence set approach proposed by Hansen et al. (2011), allowing us
to identify a subset of models that outperform all the others.

We found that asymmetric models estimated on filtered returns
provide better out-of-sample forecasts than GARCH-, GAS-type and
BMSM models estimated on raw Brent and WTI returns. This find-
ing confirms those obtained by, for example, Carnero et al. (2007),
Charles (2008) and Laurent et al. (2016) for stock and exchange-
rate returns. Taking jumps in volatility forecasting into account
may therefore improve the forecasting performance of volatility in
crude-oil markets.

Our study focuses on GARCH- and GAS-type models, which cap-
ture short memory as well as asymmetry. It would be interesting
to extend this work to long-memory models. For example, Janus
et al. (2014) propose volatility models which introduce long memory
into GAS models. Laurent et al. (2016) suggest that their jump-
detection procedure can be extended to account for long-memory, as
in FIGARCH and FIAPARCH models. Another extension would be to
consider the MSM volatility model with a LogNormal distribution as
in Lux et al. (2016). Finally, our comparison has been made in terms
of out-of-sample forecasting accuracy. It would also be of interest
to compare these approaches to Value-at-Risk calculations for risk
management in crude-oil markets. These are issues to be examined
in further research.
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