
HAL Id: hal-01579718
https://audencia.hal.science/hal-01579718v1

Submitted on 31 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive markets hypothesis for Islamic stock indices:
Evidence from Dow Jones size and sector-indices

Amélie Charles, Olivier Darné, Jae H Kim

To cite this version:
Amélie Charles, Olivier Darné, Jae H Kim. Adaptive markets hypothesis for Islamic stock indices:
Evidence from Dow Jones size and sector-indices. International Economics/Economie Internationale,
2017, 151, pp.100 - 112. �10.1016/j.inteco.2017.05.002�. �hal-01579718�

https://audencia.hal.science/hal-01579718v1
https://hal.archives-ouvertes.fr


Adaptive Markets Hypothesis for Islamic

Stock Indices: Evidence from Dow Jones

Size and Sector-indices∗
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Abstract

This paper analyzes the degree of return predictability (or weak-form infor-

mational efficiency) of Dow Jones Islamic and conventional size and sector-indices

using the data from 1996 to 2013. Employing the automatic portmanteau and vari-

ance ratio tests for the martingale difference hypothesis of asset returns, we find

that all Islamic and conventional sub-index returns have been predictable in a num-

ber of periods, consistent with the implications of the adaptive markets hypothesis.

Overall, the Islamic sector-indices exhibit a higher degree of informational efficiency

than the conventional ones, especially in the Consumer Goods, Consumer Services,

Financials and Technology sectors. We also find that the Islamic sub-indices tend

to be more efficient than the conventional ones during crisis periods.
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1 Introduction

One of the fundamental questions in economics and finance is whether prices of financial

assets are predictable. The efficient market hypothesis (EMH) of Fama (1965) states that

asset prices fully and instantaneously reflect all available and relevant information. Under

the weak-form efficiency where the information set consists of past prices and returns,

future prices and their returns are purely unpredictable based on past price information,

and thus arbitrage opportunities are competed away; and asset prices follow a martingale

process and its increments (returns) are characterized by a martingale difference sequence

(MDS), where the returns are uncorrelated with past values.1 Recent studies for the EMH

on financial markets have tested whether asset returns follow a MDS (see, for example,

Lim and Brooks, 2010; Kim et. al, 2011, Charles et al., 2011).

A number of studies examined the weak form of the EMH for the Islamic indices

(Hassan, 2002; El Khalichi et al., 2014; Rizvi et al., 2014; Jawadi et al., 2015; Al-Khazali

et al., 2016). However, these studies have not adopted time-varying measures of return

predictability to evaluate the martingale difference hypothesis (MDH), except for the

study of Sensoy et al. (2015) who implement a time-varying analysis with a rolling sam-

ple by applying the permutation entropy approach. In this paper, improved versions of

the autocorrelation test (Ljung and Box, 1978) and variance ratio test (Lo and MacKin-

lay, 1988) statistics are adopted. That is, we use the wild bootstrap automatic variance

ratio test of Kim (2009) and the automatic portmanteau test of Escanciano and Lobato

(2009a). Notably, these tests are designed to test for the MDS property, being robust

to non-normality and conditional heteroscedasticity that are typical features of stock re-

turns (see, for details, Charles et al., 2011). Using a moving sub-sample window approach,

we examine how the degree of return predictability or market (in)efficiency has evolved

over time, depending on economic, political, and financial events. This time-varying re-

1See Escanciano and Lobato (2009b) for the details of martingale process or martingale difference.
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turn predictability is consistent with the implications of the adaptive markets hypothesis

(AMH) of Lo (2004), which is a modified version of the efficient market hypothesis of

Fama (1970). An important implication of the AMH is that return predictability may

arise time to time, due to changing market conditions (cycles, bubbles, crashes, crises,

. . . ) and institutional factors. For the Islamic indices, Ho et al. (2014) and Jawadi et

al. (2014) show that changing market conditions due to crisis periods, especially during

the Global Financial Crisis, affect the performance of Islamic indices compared to their

conventional counterparts. Theses events have strong implications for the psychology of

market participants and the way they incorporate new information to prices, which in

turn may generate time variation in serial correlation of returns.2 Another implication of

the AMH is that arbitrage opportunities do arise in the financial markets from time to

time in the AMH, implying that strategies designed to exploit the arbitrage may decline

for a time, and then return to profitability when environmental conditions become more

conducive. Therefore, it is interesting to compare the conventional and Islamic indices in

relation with the AMH. This study is the first one that evaluates the return predictability

using time-varying measures in Islamic indices and their conventional counterparts, in

close association with the AMH.

A range of alternative plausible explanations have been proposed in the literature to

explain the difference of risk and performance between the Islamic and conventional in-

dices. First, the relative under-diversification of the Islamic indices due to filtering criteria

that remove a large number of Shari’ah non-compliant firms. The systematic exclusion of

the largest firms from the broad universe of investable equities included in Islamic indices

due to the financial ratios screen implies that the remaining Shari’ah compliant firms are

2Recent studies have found that changing market conditions, caused by the events such as Asian

financial crisis (e.g., Kim and Shamsuddin, 2008; Lim et al., 2013), and the Global Financial Crisis (e.g.,

Kim et al., 2011; Smith, 2012), can affect the degree of market efficiency.
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smaller (Hussein and Omran, 2005; Girard and Hassan, 2008; Saiti et al., 2014). Hussein

and Omran (2005) and Girard and Hassan (2008) find that Islamic indices are small-cap

oriented and conventional indices are relatively more mid-cap focused, whereas Charles

et al. (2015) find that both conventional and Islamic indices are rather small-cap ori-

ented. This difference could affect the return predictability of Islamic and conventional

indices, as explained by Lo and Mackinlay (1988). That is, since small-cap firms are

traded less frequently than large-cap ones, information would be promptly acted on the

prices of large-cap firms and then small-cap firms with a lag, and thus could affect the

predictability of size indices. Second, as a result, Shari’ah compliant firms become less

diversified and being concentrated in some specific sectors (Hussein and Omran, 2005).

Therefore, lower leverage and less diversification are the main distinctive features of Is-

lamic indices. Dewandaru et al. (2015) and Charles et al. (2015) find that DJ Islamic

indices are concentrated in Health Care, Industrials, Oil & Gas, and Technology. The

concentration of Islamic indices and their conventional counterparts in few sectors can

lead difference in return predictability Islamic and conventional sector-indices, and thus

suggesting interesting investment opportunities and diversification benefits (Dewandaru

et al., 2015). Therefore, it is of particular interest to compare the Islamic and conven-

tional size and sector sub-indices in the framework of return predictability. This study

is the first one to analyze and compare return predictability of Dow Jones Islamic and

conventional size and sector-indices.

The main finding of the paper is that all Islamic (DJIM) and conventional (DJG)

sub-index returns have been time-varying predictable, which is consistent with the

implications of the AMH. We also find that some Islamic sector indices are found to

be more efficient than the conventional ones. Finally, we do not observe a tendency that

the Islamic sub-indices are more efficient during the crisis periods.

5



The remainder of this paper is organized as follows: Section 2 presents a brief

literature review. Section 3 describes the tests for the MDH adopted in this paper;

Section 4 reports the empirical results. The conclusion is drawn in Section 5.

2 Brief literature survey

There is a number of studies that examined the weak form of the EMH for the Islamic

indices. Hassan (2002) examines the issues of market efficiency for the Dow Jones Islamic

Market (DJIM) index from January 1996 through December 2000, using several statistical

tests, such as serial correlation, variance ratio and Dickey-Fuller tests, and finds that

DJIM has remarkable market efficiency. He suggests that the absence of professional

speculators, liquidity and operational efficiency adversely affects the Islamic markets but

it would certainly have a salutary impact on its allocative efficiency. He also shows that

thin trading is one of characteristics of the DJIM, which can induce serial correlation in

the time series of returns. El Khalichi et al. (2014) explore the weak-form efficiency level

of Dow Jones, FTSE, MSCI and S&P500 Islamic indices by using the Lo-MacKinlay

variance ratio tests. Their results show that Islamic indices have the same level of

(in)efficiency as conventional ones, and the indices of MSCI and FTSE families are the

less inefficient. Rizvi et al. (2014) compare the weak-form efficiency hypothesis between

11 Islamic countries’ stock market indices and 11 developed markets’ indices by using

multifractal de-trended fluctuation analysis. They show that developed countries/regions

have a relatively higher efficiency level in comparison to the Islamic countries, indicating

the impact of the stage of market development on the efficiency of the market. Jawadi

et al. (2015) investigate the weak-form informational efficient hypothesis for three major

Dow Jones Islamic stock markets (World, Emerging, and Developed) over the period

May 2002 to June 2012. Using rank, Box-Pierce autocorrelation, Lo-MacKinlay variance

ratio and BDS tests, they find that emerging Islamic stock markets seem to be less
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efficient than developed Islamic markets, suggesting interesting investment opportunities

and diversification benefits from this region. Al-Khazali et al. (2016) examine the MDH

and the random walk hypothesis for 18 conventional and Islamic stock indices (Asia-

Pacific, Canadian, Developed Country, Emerging, European, Global, Japanese, UK, and

US) over four sub-periods (bullish and bearish periods) from 1997 to 2012. They use the

Escanciano and Lobato’s (2009) automatic portmanteau test (AQ) and the Deo’s (2000)

test for the MDH, and the automatic variance ratio test (AVR) developed by Choi (1999)

and Kim (2009) for the RWH. They find that three Islamic indices (Europe, Japan, and

the UK) are not efficient. However, their findings about efficiency vary with the sub-

period and the market state. For example, during the crisis period (2007-2012), their

results indicate slightly more efficiency for the Islamic indices than their conventional

counterparts. Overall, they find that the conventional indices are more efficient than

their Islamic counterparts.

However, these studies did not use time-varying measures to evaluate the MDH, without

link with the AMH, except the study of Sensoy et al. (2015) who implement a time-

varying analysis with a rolling sample by applying the permutation entropy approach.3

We note that the permutation entropy test is designed for the null hypothesis of

independent stock returns, which can be too restrictive and unsuitable for stock returns

with the MDS properties such as dependence in variance. In addition, the permutation

entropy approach does not provide a sensible measure of return predictability. They find

that all indices have different degrees of time-varying predictability and all conventional

markets are found to be more efficient compared to their Islamic counter-parts at both

country and continent levels from 1998 to 2014. However, in some of the cases, this

difference in efficiency is almost indistinguishable. They show that efficiency in these

markets depends mostly on liquidity, market quality, institutional characteristics and the

3Sensoy et al. (2015) also compare their results to those obtained from the Lo-MacKinlay variance

ratio test, and find similar results.
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country/continent specific investment behavior. They also show that the global financial

crisis had an adverse effect on their market efficiency of both indices to varying extents.4

However, these studies do not examine the predictability of Islamic and conventional

indices for size and sectors sub-indices and during crisis periods, and the results vary

with the sub-indices and the sub-periods.

Some studies explore the existence of diversification opportunities using cointegration

methodology. Girard and Hassan (2008) and Kok et al. (2009) suggest to use Islamic

and conventional indices as asset classes to have more diversification benefits. Kok et

al. (2009) exhibit the existence of diversification opportunities by grouping Islamic

with conventional and socially responsible indices on the UK market. Majid and

Kassim (2010) find that the investors can gain benefits by diversifying in the Islamic

stock markets across economic groupings such as that in the developed and developing

countries, but limited benefits within the same economic groupings. El Khalichi et

al. (2014) show diversification opportunities for Dow Jones and Standard & Poor’s

Islamic indices (market-capitalization based Shariah screening requirements), but not for

FTSE and MSCI Islamic indices (asset-based Shariah screening requirements). Jawadi

et al. (2015) find interesting investment opportunities and diversification benefits from

emerging Islamic stock markets than from developed Islamic markets.

3 Methodology

We apply the automatic portmanteau test of Escanciano and Lobato (2009a) and

automatic variance ratio test of Kim (2009), to evaluate market efficiency or return

4Note that Sensoy et al. (2015) study only the Global Financial crisis period and not the other crisis

periods, especially the pre-crisis period from December 1998 to November 2007 (including the Dotcom

crisis period) and the post-crisis from July 2009 to June 2014 (including the European Sovereign Debt

crisis period).

8



predictability in this study. The portmanteau test (Ljung and Box, 1978) and variance

ratio test (Lo and MacKinlay, 1988) have been widely used in empirical finance as a

means of evaluating asset return predictability. However, they are well-known to suffer

from deficient properties in small samples, especially under conditional heteroskedasticity

widely observed in financial data. In addition, they require ad hoc choices of the lag length

or holding periods, further undermining their small sample properties. There have been

a number of recent contributions to these tests, which attempt to improve their small

sample properties under conditional heteroskedasticity: see, for example, Lobato et al.

(2001) for the modified portmanteau test and Kim (2006) for the wild bootstrap variance

ratio tests.

To overcome the problem of choosing the lag length or holding period in an ad hoc

way, Escanciano and Lobato (2009a) propose an automatic portmanteau (AQ) test where

selection of lag length is made fully automatic based on a fully data-dependent procedure;

and Kim (2009) proposes the use of an automatic variance ratio (AVR) test where the

optimal holding period is automatically chosen. In their Monte Carlo study, Charles et

al. (2011) report that the AVR and AQ tests show highly desirable small sample (size

and power) properties, under a wide range of conditionally heteroskedastic asset returns.

We note that these two tests are designed to test for the MDS property of asset returns,

unlike the permutation entropy test employed by of Sensoy et al. (2015) which tests for

the iid (independently and identically distributed) property. It is well-known that a test

for iid property may suffer from serious size distortion when the underlying time series

follows an MDS (see, for example, Lo and Mackinlay, 1989; and Wright; 2000).

3.1 Automatic portmanteau test

Let Yt denote asset return at time t, where t = 1, ..., T . Under the null hypothesis of no

asset return predictability, Yt is a strictly stationary and ergodic martingale difference
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sequence (MDS) with appropriate moment conditions (see Escanciano and Lobato, 2009a;

Assumption A1). The original portmanteau test statistic is written as

Qp = T

p∑
i=1

ρ̂2(i), (1)

where ρ̂(i) is the sample estimator for ρ(i) which is the population autocorrelation of Yt

of order i. When Yt shows conditional heteroscedasticity, Lobato et al. (2001) propose

the use of a robustified test statistic of the form

Q∗
p = T

p∑
i=1

ρ̃2(i), (2)

where ρ̃(i) = γ̂2(i)/τ̂(j), γ̂(i) is the sample autocovariance of Yt of order i, and τ̂(i) is

the sample autocovariance of Y 2
t of order i .

The choice of p should be made to implement the test. In order to avoid an ad

hoc selection, Escanciano and Lobato (2009a) propose an automatic test AQ where the

optimal value of p is determined by a fully data-dependent procedure. Under the null

hypothesis of MDS where ρ(i) = 0 for all i, the test statistic asymptotically follows the

χ2
1 distribution. The null hypothesis of no return predictability is rejected at α level

of significance, if the AQ statistics is greater than its asymptomatic critical value χ2
1,α,

which is the 100(1-α)th percentile of the χ2
1 distribution.

3.2 Automatic variance ratio test

Choi’s (1999) AVR test is based on a variance ratio estimator related to the normalized

spectral density estimator at zero frequency. Namely,

V̂ R(k) = 1 + 2
T−1∑
i=1

k(i/k)ρ̂(i), (3)
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where

k(x) =
25

12π2x2

[
sin (6πx/5)

6πx/5
− cos (6πx/5)

]
is the quadratic spectral kernel. Note that the estimator given in (4) is a weighted average

of sample autocorrelations of Yt. According to Choi (1999), under the null hypothesis

that Yt is an MDS,

AV R(k) =
√
T/k[V̂ R(k)− 1]/

√
2→d N(0, 1), (4)

as T → ∞, k → ∞, and T/k → ∞. To implement the test, a choice for the value

of lag truncation point k should be made, which is equivalent to the value of holding

period in the time domain. Choi (1999) proposes a data-dependent method of choosing

k optimally, following Andrews (1991), noting that this choice may exert an enormous

impact on the variance ratio test. The AV R test statistic with the optimally chosen lag

truncation point is denoted as AV R(k∗).

To improve the small sample properties of the AVR test under conditional

heteroskedasticity, Kim (2009) proposes wild bootstrapping of the test, which is

conducted in three stages as follows:

1. Form a bootstrap sample of size T as Y ∗
t = ηtYt (t = 1, ..., T ) where ηt is a random

variable with zero mean and unit variance;

2. Calculate AV R∗(k∗), the AV R(k∗) statistic calculated from {Y ∗
t }Tt=1;

3. Repeat 1 and 2 B times, to produce the bootstrap distribution of the AV R statistic

{AV R∗(k∗; j)}Bj=1.

The test for H0 against the two-tailed alternative is conducted to using the p-value,

which is estimated as the proportion of the absolute values of {AV R∗(k∗; j)}Bj=1 greater

than the observed statistic AV R(k∗). Alternatively, one may use the 100(1 − 2α) per
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cent confidence interval under H0, which can be written as [AV R∗(α), AV R∗(1 − α)],

where AV R∗(α) denotes the αth percentile of {AV R∗(k∗; j)}Bj=1. For ηt, we use the two

point distribution proposed by Mammen (1993). The number of bootstrap replications

B is set at 500 in this study, which is well-known to be sufficient for p-value calculation

and the construction of bootstrap confidence interval.

3.3 Measuring the Degree of Return Predictability

The AQ and AV R(k∗) tests described above are used to evaluate statistical significance of

return predictability, by testing if the population autocorrelation values are 0. However,

evaluation of effect size is also important, which in this case represents the magnitude

of the degree of return predictability. Note that the AQ and AV R(k∗) statistics can be

used as natural measures of return predictability.5 Since the AQ statistic is the sum of

squared sample autocorrelations of Yt to the optimal order (scaled by the sample size), a

higher value of AQ statistic indicates a higher degree of return predictability. Similarly,

the AV R(k∗) statistic is one plus a weighted sum of the autocorrelations to the optimal

order, with positive and declining weights. The main difference between the AQ and

AV R(k∗) statistics is that the former treats all sample autocorrelations to the optimal

order with equal weights, while the latter provides higher weights to lower order sample

autocorrelations.

4 Empirical Results

4.1 Data Details

For the purpose of our analysis on any Shari’ah screening criteria effect on the

predictability, we consider the daily data of the Dow Jones Islamic Market (DJIM) index

5Griffin et al. (2010) use the absolute value of V R(k)− 1 as a measure of return predictability.
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and the Dow Jones Global (DJG) index, spanning January 1st, 1996 to March 15th,

2013 (3,653 observations).6 We chose these Islamic and conventional indices because

the corresponding size and sector-indices are available on a long period including major

crises, namely Asian Financial crisis, Dotcom crisis, Global Financial crisis and European

Sovereign Debt crisis, which have a strong impact on the psychology of the markets for

all financial assets. We study (1) the corresponding sub-indices based on size (proxied

by the free float-adjusted market capitalization) and classified into three categories:

large-, mid- and small-caps; and (2) the corresponding sector-indices and classified

according to the Industry Classification Benchmark into ten categories: Basic Materials,

Consumer Goods, Consumer Services, Financials, Health Care, Industrials, Oil and Gas,

Technology, Telecommunications, and Utilities. The daily returns are computed as the

natural logarithmic first difference of the daily closing prices, which are obtained from

Datastream Thomson. The logarithmic stock returns are multiplied by 100 to avoid

convergence problems.

Table 1 presents the descriptive statistics for the log-returns of sector and size-indices.

We show that filtering criteria remove a large number of Shari’ah non-compliant firms,

reducing the number of stocks included in the DJIM indexes by 60-70%. The Islamic

sub-indices display higher mean returns than the conventional ones but they are also

slightly more volatile, as also noted by Charles et al. (2015). All the returns are clearly

non-normal, showing evidence of negative excess skewness and excess kurtosis, except

for the Technology sector displaying positive skewness. Note that the Financials and

Utilities sectors of the DJIM have positive skewness whereas their counterpart of the DJG

are negative, suggesting some difference in the behavior of the returns. The Lagrange

Multiplier (LM) test for the presence of the ARCH effect indicates that the returns show

strong conditional heteroscedasticity, which is a typical feature of financial returns at the

6See Hussein (2004) for a detailed discussion on the DJIM index.
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daily frequency. The strong evidence of non-normality and conditional heteroskedasticity

suggest that the AQ and AVR tests employed in this paper are well-suited for the data.

In order to examine how return predictability changes depending on the major crises,

we define sub-periods according to the periods of (non)crises: (i) Asian Financial Crisis

from June 1997 to January 1998; (ii) Dotcom Crisis (from March 2000 to October 2002;

(iii) Global Financial Crisis (GFC) from July 2007 to June 2009; and (iv) European

Sovereign Debt Crisis from December 2009 to December 2012.

4.2 Evaluating time-varying return predictability

To evaluate time-varying return predictability, we use moving sub-sample window of 2

years, which consists of approximately 520 daily observations. This sample size is large

enough to ensure desirable size and power properties of the tests employed (see Charles

et al., 2011). The 2-year window is also suitable to capture the effects of changing market

conditions.7 The first sub-sample window covers the period from January 1996 to Decem-

ber 1997. Then, the window moves forward by one month to cover the period of February

1996 to January 1998. The process continues to the end of data set. Throughout this

process, we calculate the AQ and AVR statistics as measures of time-varying return pre-

dictability. In this way, the periods or episodes of high degree of return predictability

(with statistical significance) is identified, which in turn are related to the corresponding

events and shocks. Note that the use of moving sub-sample window approach is not in-

tended for multiple testing in this paper, but adopted as a means of measuring the degree

of return predictability over time. It is also an effective guard against data snooping bias

(see Hsu and Kuan, 2006).

7We have also considered shorter window lengths (180 and 260 days), and we found that the results

are not sensitive to the different choices of window length. The results are available upon request.
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Figures 1-5 report the AQ statistics obtained from moving sub-sample windows,

monthly from January 1998 to March 2013, for size and sector-indices. Note that the

results from the AVR test are not reported for simplicity since we have found similar

results.8 The AQ statistics are plotted in black line for the Islamic index and in red line

for the conventional index, and the horizonal line indicate the 5% asymptotic critical

value of 3.89. The AQ value greater than the critical value indicates the rejection of the

null hypothesis of MDH (no return predictability) at 5% level of significance, which is

statistical evidence against weak-from efficiency. In addition, a higher value of the AQ

statistic indicates a higher degree of return predictability, as discussed in the previous

section.

Figure 1 reports the AQ statistics for all size indices. We observe extensive periods

of return predictability where the MDH is rejected most of times, except for the periods

of the Dotcom crisis (around 2004) and the GFC (around 2009). The evidence against

no return predictability is stronger for the conventional index than Islamic index; and

stronger for small-cap and medium-cap indices than large-cap index. For example, the

median values of AQ statistic for medium-cap index are 11.39 and 13.22, respectively,

for the Islamic and conventional sub-indices; while those for large-cap index are 7.88

and 9.64, respectively. This means that higher informational efficiency is associated with

Islamic and large-cap index. There is also a strong tendency that the degree of return

predictability decreases over time, for both Islamic and conventional sub-indices, imply-

ing that the markets have become more efficient since late 1990’s. It can also be observed

that the difference in the degree of the return predictability between the Islamic and con-

ventional sub-indices gets smaller over time, and the degree of return predictability has

become virtually identical after 2011.

8The AVR test results are available upon request.
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Figures 2 to 5 report the AQ statistics for sector indices. The returns from the

Basic Materials sector exhibit a high degree of return predictability for both Islamic

and conventional sub-indices, while both sub-indices show similar pattern over time.

For the Consumer Goods and Consumer Services sectors, both sub-indices show largely

different patterns in return predictability. That is, the conventional sub-index shows

much higher AQ statistics than the Islamic sub-index almost always, also showing much

more extensive periods of return predictability. Similar observations can be made for

the Financials sector, where the Islamic sub-index shows a substantially lower degree

of return predictability than its conventional counterpart nearly all the time. For the

Healthcare sector, the AQ statistic is virtually identical for the Islamic and conventional

sub-indices, while their returns have been unpredictable for most of times, except for early

2000’s. For the Industrials sector, both sub-indices have been showing similar pattern,

but both sub-indices show strong return predictability over time. The Oil & Gas and

Telecommunications sectors show the pattern of return predictability similar to that of

the Healthcare sector, where both Islamic and conventional sub-indices exhibit similar

degree of return predictability. For the Technology sector, the Islamic sub-index is found

to be much more efficient than the conventional sub-index, while no strong difference in

the pattern of return predictability is found for the Utilities sector.

When comparing return predictability across sectors we find that the Basic Materials

and Industrials sectors display the highest degree of return predictability, suggesting

that these sectors are less informational efficient than the other sectors, whereas the

Consumer Services, Healthcare, Technology and Utilities exhibit the lowest degree of re-

turn predictability. Finally, we also find that the Consumer Goods, Financials and Oil

& Gas sectors show strong return predictability.

The overall results indicate that all Islamic and conventional sub-index returns have
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been predictable in a number of periods. This means that the Islamic and conventional

markets often show departure from market efficiency from time to time, which is

consistent with the implications of the AMH. However, overall, the Islamic sub-indices

are found to be more efficient than the conventional indices, especially in the Consumer

Goods, Consumer Services, Financials, and Technology Sectors.

4.3 Return predictability during crisis periods

Given the observations made by the past studies that the Islamic indices outperform the

conventional ones during crisis times, we now examine the degree of return predictability

of Islamic and conventional sub-indices during the crisis periods, namely Asian Crisis,

Dotcom Crisis, Global Financial Crisis (GFC) and European Sovereign Debt Crisis.

Table 2 displays the AQ and AVR test statistics and their p-values for the size

indices. For all size indices, the null hypothesis of MDH (no return predictability) is

rejected at 5% level of significance for both Islamic and conventional sub-indices during

the Asian Financial, Dotcom and European Sovereign Debt crises, which is evidence

against weak-from efficiency of both markets during these crisis periods. During the

GFC, the null of MDH is rejected for the medium and small-cap indices, for both Islamic

and conventional sub-indices. For the large-cap index, there is strong evidence of the

weak-form efficiency during the GFC, especially for the Islamic sub-indices. However,

there is also a strong tendency that both AQ and AVR test statistics are smaller for the

Islamic sub-indices, especially for the large-cap index, suggesting that a higher degree of

informational efficiency is associated with this Islamic sub-index during crisis periods.

The results of AQ and AVR tests for the sector indices are given in Tables 3 and 4. For

the Basic Materials sector, the Islamic and conventional sub-indices show similar degree

of return predictability: the null hypothesis of no return predictability is rejected for all

crisis periods. For the Consumer Goods sector, the Islamic and conventional sub-indices
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again show similar test outcomes: strong return predictability for the Asian and European

crises, but otherwise for the Dotcom crisis and GFC. For the Consumer Services sector,

the Islamic sub-index is found to be more efficient during the European crisis and the

GFC, while there is a tendency that a lower predictability is associated with this Islamic

sub-indices during other crisis periods. For the Financials sector, the Islamic sub-index is

found to be more efficient only during the Asian crisis. For the Healthcare sector, the AQ

and AVR tests deliver similar outcomes for both Islamic and conventional sub-indices,

except for the Asian crisis where the AVR test show efficiency of this Islamic sub-index.

For Industrials, Oil & Gas, Technologies, and Telecommunications sectors, the AQ and

AVR tests provide the same inferential outcomes for the Islamic and conventional sub-

indices. It is notable that both sub-indices are found to be efficient during the GFC for

the Oil & Gas, Technologies, and Telecommunications sectors. For the Utilities sector,

the Islamic sub-index is found to be clearly more efficient than the conventional one

during the Asian crisis, while the two tests deliver similar outcomes for the other crises.

The overall result suggests that there is no tendency that the Islamic sub-indices have

been showing a lower (or higher) degree of predictability during the crisis times, and the

results vary with the sub-indices and the sub-periods. Al-Khazali et al. (2016) find that

the Islamic indices are slightly more efficient than their conventional counterparts during

the recent crisis period. However, this different result can be explained by the fact that

their study covers 18 conventional and Islamic stock indices, and not (size and sector)

sub-indices, and their crisis period (2007-2012) includes the European Sovereign Debt

crisis period. It is also notable that both Islamic and conventional sub-indices show a

high degree of informational efficiency during the GFC for some sectors (Healthcare, Oil

& Gas, Technologies, Telecommunications, and Utilities).9

9We have also applied the AQ and AVR tests before and after the crises in order to see whether the

crises can improve the level of market efficiency or not. The results do not show any pattern before and

after the crises for the size and sector indices. The results are available upon request.
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5 Conclusion

Financial assets that comply with the Islamic law is growing at a fast rate in the global

financial markets, attracting a great deal of attention from both academic researchers and

practitioners (see, for example, Abdelsalam and El-Komi; 2015). One of the fundamental

questions not sufficiently answered in the extant literature is the degree of informational

efficiency or return predictability of the Islamic indices. In this paper, we analyze the

degree of informational efficiency of Islamic index, in association with Lo’s (2004, 2005)

adaptive markets hypothesis (AMH). The key questions include how the degree of return

predictability evolves over time and whether the Islamic index shows a higher degree of

informational efficiency than the conventional index. These questions are not fully and

properly answered in the previous studies. To this end, we conduct an extensive analysis

in this paper, using disaggregated data sets and adopting new econometric methods with

desirable small sample properties.

This paper evaluates the return predictability of Dow Jones Islamic and conventional

indices by testing for the martingale difference hypothesis (MDH), using the daily data

from 1996 to 2013. We pay attention to the size and sector indices to reflect the nature of

Islamic indices which have a tendency of small-cap and of selective industry concentration.

We employ the automatic portmanteau test of Escanciano and Lobato (2009a) and

automatic variance ratio test of Kim (2009). These tests are explicitly designed to test for

the martingale difference property of asset returns and found to possess desirable size and

power properties in small samples under non-normality and conditional heteroskedasticity

(see Charles et al., 2011). These tests also provide a sensible measures of the degree of

return predictability or informational efficiency.

We find that both Islamic and conventional sub-indices have been showing time-

varying return predictability, which is consistent with the implications of the AMH.

However, we find a strong tendency that the Islamic sub-indices exhibit more periods of
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no return predictability than the conventional ones. In addition, while both Islamic and

conventional sub-indices show a similar degree of market efficiency in Basic Materials,

Industrials, Oil & Gas, Telecommunications and Health Care sectors, the Islamic sub-

indices are found to exhibit a substantially higher degree of informational efficiency in

the Consumer Goods, Consumer Services, Financials and Technologies sectors. Finally,

we do not observe evidence that the Islamic sub-indices tend to be more efficient than

the conventional ones during crisis periods, and the results vary with the sub-indices and

the sub-periods.
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Table 1: Summary statistics

Index N Mean St. dev. Skewness Kurtosis JB ARCH

(%) (%)

Size indices

Large caps DJIM 550 0.021 1.058 -0.301∗ 10.02∗ 2761.9∗ 1292.4∗

DJG 1410 0.016 1.031 -0.321∗ 9.83∗ 2642.1∗ 1321.0∗

Medium caps DJIM 853 0.033 1.171 -0.408∗ 7.81∗ 1518.7∗ 1238.8∗

DJG 2386 0.025 1.007 -0.525∗ 9.68∗ 2279.2∗ 1386.3∗

Small caps DJIM 967 0.040 1.231 -0.404∗ 6.68∗ 1010.5∗ 1256.2∗

DJG 2775 0.025 1.051 -0.546∗ 8.54∗ 1688.0∗ 1217.2∗

Sector indices

Basic Materials DJIM 375 0.026 1.370 -0.501∗ 11.22∗ 3088.2∗ 1500.9∗

DJG 667 0.018 1.299 -0.519∗ 11.64∗ 3278.7∗ 1564.2∗

Consumer Goods DJIM 255 0.022 0.854 -0.225∗ 9.78∗ 2677.5∗ 1026.9∗

DJG 346 0.022 0.811 -0.156∗ 10.86∗ 3308.1∗ 1055.1∗

Consumer Services DJIM 191 0.033 1.141 -0.132∗ 7.58∗ 1593.1∗ 603.1∗

DJG 778 0.021 1.009 -0.262∗ 7.71∗ 1583.9∗ 913.4∗

Financials DJIM 63 0.007 1.693 0.206∗ 16.39∗ 6361.7∗ 942.8∗

DJG 1310 0.008 1.271 -0.177∗ 12.27∗ 4071.2∗ 1109.6∗

Health Care DJIM 255 0.028 0.989 -0.215∗ 8.92∗ 2229.6∗ 810.3∗

DJG 346 0.027 0.961 -0.255∗ 9.50∗ 2501.7∗ 871.5∗

Industrials DJIM 576 0.022 1.145 -0.345∗ 8.39∗ 1847.4∗ 1184.7∗

DJG 1370 0.016 1.082 -0.407∗ 8.45∗ 1810.6∗ 1227.0∗

Oil & Gas DJIM 201 0.029 1.460 0.516∗ 12.07∗ 3511.8∗ 1423.4∗

DJG 353 0.029 1.417 -0.546∗ 9.78∗ 3833.4∗ 1530.1∗

Technology DJIM 334 0.023 1.712 0.088∗ 6.96∗ 1301.8∗ 694.6∗

DJG 525 0.022 1.616 0.045 6.96∗ 1311.2∗ 720.0∗

Telecommunications DJIM 64 0.019 1.179 -0.083∗ 7.62∗ 1627.9∗ 847.0∗

DJG 136 0.011 1.134 -0.114∗ 7.78∗ 1696.5∗ 990.9∗

Utilities DJIM 50 0.013 1.108 0.063 20.10∗ 8537.7∗ 1334.4∗

DJG 256 0.010 0.855 -0.176∗ 18.51∗ 7585.6∗ 1591.7∗

Note: DJIM and DJG denote the Dow Jones Islamic Market index and the Dow Jones Global index, respectively. The

data covers the period from January 1st, 1996 to March 15th, 2013 (3,653 observations). The sub-indices based on size

are proxied by the free float-adjusted market capitalization, and the sector-indices are classified according to the Industry

Classification Benchmark. N denotes the number of firms. The skewness and kurtosis statistics are standard-normally

distributed under the null of normality distributed returns. JB denotes the Jarque-Bera test for non-normality following a

χ2(2) distribution. ARCH indicates the Lagrange multiplier test for conditional heteroscedasticity with 10 lags following

a χ2(10) distribution. ∗ indicates statistical significance at the 5% level.
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Table 2: AQ and AVR statistics for size indices.

AQ AVR

Islamic conventional Islamic conventional

Large caps

Asian crisis 12.93∗
(0.00)

21.06∗
(0.00)

2.40∗
(0.01)

2.63∗
(0.00)

Dotcom crisis 4.62∗
(0.03)

7.74∗
(0.01)

1.66∗
(0.04)

1.57∗
(0.05)

European sovereign debt crisis 12.46∗
(0.00)

13.49∗
(0.00)

2.75∗
(0.00)

2.86∗
(0.00)

GFC 0.79
(0.37)

3.14∗∗
(0.08)

0.09
(0.87)

0.76
(0.39)

Medium caps

Asian crisis 20.79∗
(0.00)

18.42∗
(0.00)

2.97∗
(0.00)

3.52∗
(0.00)

Dotcom crisis 8.69∗
(0.00)

8.36∗
(0.00)

1.64∗∗
(0.06)

1.26
(0.12)

European sovereign debt crisis 11.65∗
(0.00)

11.54∗
(0.00)

2.71∗
(0.01)

2.85∗
(0.00)

GFC 5.40∗
(0.02)

7.27∗
(0.01)

1.72∗∗
(0.08)

2.01∗
(0.04)

Small caps

Asian crisis 25.29∗
(0.00)

20.07∗
(0.00)

4.31∗
(0.00)

4.52∗
(0.00)

Dotcom crisis 5.11∗
(0.02)

4.71∗
(0.03)

1.61∗∗
(0.08)

1.55
(0.14)

European sovereign debt crisis 9.72∗
(0.00)

9.30∗
(0.00)

3.04∗
(0.00)

3.17∗
(0.00)

GFC 7.66∗
(0.01)

7.51∗
(0.01)

2.41∗
(0.01)

2.47∗
(0.01)

Note: The table displays the AQ and AVR statistics with their p-values in brackets. ∗ and ∗∗ indicate statistical significance

at 5% and 10% level.
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Table 3: AQ and AVR statistics for sector indices.

AQ AVR

Islamic conventional Islamic conventional

Basic Materials

Asian crisis 8.43∗
(0.00)

8.04∗
(0.00)

2.10∗∗
(0.06)

3.93∗
(0.02)

Dotcom crisis 6.07∗
(0.01)

6.47∗
(0.01)

1.82∗
(0.05)

2.20∗
(0.02)

European sovereign debt crisis 27.5∗
(0.00)

29.7∗
(0.00)

3.90∗
(0.00)

4.02∗
(0.00)

GFC 12.1∗
(0.01)

12.0∗
(0.00)

2.44∗
(0.03)

2.31∗
(0.03)

Consumer Goods

Asian crisis 10.1∗
(0.00)

8.34∗
(0.00)

1.99∗
(0.01)

1.43∗∗
(0.07)

Dotcom crisis 7.40∗
(0.01)

1.27
(0.26)

0.40
(0.70)

0.63
(0.53)

European sovereign debt crisis 9.26∗
(0.00)

22.3∗
(0.00)

2.34∗
(0.01)

2.54∗
(0.00)

GFC 2.48
(0.12)

7.10∗
(0.01)

0.50
(0.57)

1.12
(0.21)

Consumer Services

Asian crisis 15.0∗
(0.00)

19.4∗
(0.00)

2.59∗
(0.01)

2.53∗
(0.00)

Dotcom crisis 6.70∗
(0.01)

9.31∗
(0.00)

1.89∗
(0.02)

2.36∗
(0.02)

European sovereign debt crisis 1.08
(0.30)

6.50∗
(0.01)

1.37
(0.16)

2.40∗
(0.02)

GFC 0.12
(0.72)

3.00∗∗
(0.08)

0.51
(0.52)

0.87
(0.31)

Financials

Asian crisis 0.74
(0.39)

54.3∗
(0.00)

1.31
(0.39)

3.47∗
(0.00)

Dotcom crisis 5.76∗
(0.02)

3.34∗∗
(0.07)

2.84∗
(0.01)

0.94
(0.27)

European sovereign debt crisis 1.67
(0.20)

11.0∗
(0.00)

2.07∗∗
(0.06)

2.84∗
(0.00)

GFC 7.91∗
(0.00)

8.01∗
(0.00)

−3.38∗
(0.01)

2.12∗
(0.03)

Health Care

Asian crisis 4.23∗
(0.04)

6.12∗
(0.01)

1.55
(0.55)

1.82∗
(0.04)

Dotcom crisis 22.4∗
(0.00)

22.0∗
(0.00)

−0.46
(0.60)

−0.30
(0.70)

European sovereign debt crisis 0.98
(0.32)

1.40
(0.24)

1.06
(0.22)

1.39
(0.16)

GFC 0.28
(0.60)

0.41
(0.52)

0.20
(0.81)

0.05
(0.91)

Note: The table displays the AQ and AVR statistics with their p-values in brackets. ∗ and ∗∗ indicate statistical significance

at 5% and 10% level.
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Table 4: AQ and AVR statistics for sector indices.

AQ AVR

Islamic conventional Islamic conventional

Industrials

Asian crisis 18.2∗
(0.00)

17.9∗
(0.00)

3.82∗
(0.00)

3.32∗
(0.00)

Dotcom crisis 10.2∗
(0.00)

12.3∗
(0.00)

2.26∗
(0.01)

2.32∗
(0.01)

European sovereign debt crisis 16.2∗
(0.00)

22.2∗
(0.00)

2.97∗
(0.00)

3.35∗
(0.00)

GFC 9.08∗
(0.00)

10.7∗
(0.00)

1.88∗∗
(0.05)

2.27∗
(0.03)

Oil & Gas

Asian crisis 54.6∗
(0.00)

51.8∗
(0.00)

2.16∗
(0.01)

2.64∗
(0.01)

Dotcom crisis 9.77∗
(0.00)

9.56∗
(0.00)

−0.14
(0.70)

−0.16
(0.69)

European sovereign debt crisis 9.45∗
(0.00)

11.0∗
(0.00)

2.73∗
(0.00)

2.93∗
(0.00)

GFC 0.01
(0.94)

0.07
(0.80)

0.08
(0.84)

0.64
(0.52)

Technologies

Asian crisis 3.67∗
(0.05)

8.86∗
(0.00)

1.24
(0.14)

1.85∗∗
(0.06)

Dotcom crisis 0.39
(0.53)

1.36
(0.24)

0.65
(0.40)

1.18
(0.19)

European sovereign debt crisis 5.77∗
(0.02)

7.41∗
(0.00)

2.46∗
(0.01)

2.76∗
(0.00)

GFC 0.05
(0.83)

0.55
(0.47)

0.23
(0.69)

0.47
(0.53)

Telecommunications

Asian crisis 12.3∗
(0.00)

14.5∗
(0.00)

2.35∗
(0.00)

2.82∗
(0.00)

Dotcom crisis 9.13∗
(0.00)

9.07∗
(0.00)

2.69∗
(0.00)

2.79∗
(0.00)

European sovereign debt crisis 4.23∗
(0.04)

4.47∗
(0.03)

1.64∗∗
(0.06)

2.79∗
(0.00)

GFC 0.89
(0.35)

0.57
(0.45)

0.28
(0.70)

0.31
(0.71)

Utilities

Asian crisis 0.01
(0.94)

8.34∗
(0.01)

−0.03
(0.94)

2.06∗
(0.01)

Dotcom crisis 0.01
(0.91)

0.19
(0.66)

−0.14
(0.77)

0.39
(0.49)

European sovereign debt crisis 6.35∗
(0.01)

4.85∗
(0.03)

2.42∗
(0.01)

1.90∗
(0.03)

GFC 0.42
(0.52)

0.40
(0.53)

0.27
(0.75)

−0.23
(0.82)

Note: The table displays the AQ and AVR statistics with their p-values in brackets. ∗ and ∗∗ indicate statistical significance

at 5% and 10% level.
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Figure 1: AQ statistics for size indexes.

Note: The AQ statistics are plotted in black line for the Islamic index and in red line for the conventional index, and the

horizonal line indicate the 5% asymptotic critical value of 3.89.
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Figure 2: AQ statistics for sector indexes.

Note: The AQ statistics are plotted in black line for the Islamic index and in red line for the conventional index, and the

horizonal line indicate the 5% asymptotic critical value of 3.89.
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Figure 3: AQ statistics for sector indexes.

Note: The AQ statistics are plotted in black line for the Islamic index and in red line for the conventional index, and the

horizonal line indicate the 5% asymptotic critical value of 3.89.
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Figure 4: AQ statistics for sector indexes.

Note: The AQ statistics are plotted in black line for the Islamic index and in red line for the conventional index, and the

horizonal line indicate the 5% asymptotic critical value of 3.89.
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Figure 5: AQ statistics for sector indexes.

Note: The AQ statistics are plotted in black line for the Islamic index and in red line for the conventional index, and the

horizonal line indicate the 5% asymptotic critical value of 3.89.
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